K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(2x^2-3x-2=0\)

nên a=2; b=-3 và c=-2

Vì \(x_1\) và \(x_2\) là nghiệm của phương trình \(2x^2-3x-2=0\) nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{3}{2}\\x_1\cdot x_2=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=-1\)

nên \(2\cdot x_1\cdot x_2=-2\)

Ta có: \(\left(x_1+x_2\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2+2\cdot x_1\cdot x_2=\dfrac{9}{4}\)

\(\Leftrightarrow x_1^2+x_2^2=\dfrac{9}{4}+2=\dfrac{17}{4}\)

2 tháng 11 2017

2x2 – 17x + 1 = 0

Có a = 2; b = -17; c = 1

Δ = b2 – 4ac = (-17)2 – 4.2.1 = 281 > 0.

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

    x1 + x2 = -b/a = 17/2

    x1.x2 = c/a = 1/2.

5 tháng 5 2020

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

5 tháng 5 2020

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)

NV
9 tháng 9 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

15 tháng 4 2018

Ta có: ∆ ’ = 2 2 – (2 -  3 )(2 +  2  ) =4 -4 - 2 2 +2 3  + 6

= 2 3  - 2 2  + 6  >0

Phương trình 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9