Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)
\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
a.
\(y'=-\dfrac{3}{2}x^3+\dfrac{6}{5}x^2-x+5\)
b.
\(y'=\dfrac{\left(x^2+4x+5\right)'}{2\sqrt{x^2+4x+5}}=\dfrac{2x+4}{2\sqrt{x^2+4x+5}}=\dfrac{x+2}{\sqrt{x^2+4x+5}}\)
c.
\(y=\left(3x-2\right)^{\dfrac{1}{3}}\Rightarrow y'=\dfrac{1}{3}\left(3x-2\right)^{-\dfrac{2}{3}}=\dfrac{1}{3\sqrt[3]{\left(3x-2\right)^2}}\)
d.
\(y'=2\sqrt{x+2}+\dfrac{2x-1}{2\sqrt{x+2}}=\dfrac{6x+7}{2\sqrt{x+2}}\)
e.
\(y'=3sin^2\left(\dfrac{\pi}{3}-5x\right).\left[sin\left(\dfrac{\pi}{3}-5x\right)\right]'=-15sin^2\left(\dfrac{\pi}{3}-5x\right).cos\left(\dfrac{\pi}{3}-5x\right)\)
g.
\(y'=4cot^3\left(\dfrac{\pi}{6}-3x\right)\left[cot\left(\dfrac{\pi}{3}-3x\right)\right]'=12cot^3\left(\dfrac{\pi}{6}-3x\right).\dfrac{1}{sin^2\left(\dfrac{\pi}{3}-3x\right)}\)