Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{4x^2-8xy}{10y-5x}=\dfrac{4x\left(x-2y\right)}{5\left(2y-x\right)}=\dfrac{-4x}{5}\)
b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}=\dfrac{\left(x-2-1\right)\left(x-2+1\right)}{\left(x-3\right)^2}\)
\(=\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)^2}=\dfrac{x-1}{x-3}\)
c, \(\dfrac{x^2+8x+16}{x^2-16}=\dfrac{\left(x+4\right)^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\)
a. 25 - \(x^2\) = (5-x) (5+x)
b) -196 + 4\(x^2\) = 196 - 4\(x^2\) = (14- 2x) (14+2x)
c)\(5^4-81x^4\) = \(\left[\left(5^2\right)^2\right]-\left[\left(81x^2\right)^2\right]\) = (\(\left(5^2-81x^2\right)\left(5^2+81x^2\right)\)
\(a,25-e=\left(5-\sqrt{e}\right)\left(5+\sqrt{e}\right)\)
\(b,-196+g=-\left(196-g\right)=-\left(14-\sqrt{g}\right)\left(14+\sqrt{g}\right)\)
\(c,2^6-47^2=\left(2^3\right)^2-47^2=\left(2^3-47\right)\left(2^3+47\right)\)
\(d,5^4-81x^4=\left(5^2\right)^2-\left(9x^2\right)^2=\left(5^2-9x^2\right)\left(5^2+9x^2\right)=\left(25-9x^2\right)\left(25+9x^2\right)\)
\(i,\dfrac{25}{16}-9y^2=\left(\dfrac{5}{4}-3y\right)\left(\dfrac{5}{4}+3y\right)\)
a)
\(25x^2-9(x+y)^2=(5x)^2-(3x+3y)^2\)
\(=(5x-3x-3y)(5x+3x+3y)=(2x-3y)(8x+3y)\)
b)
\(x^2-x-2=x^2+x-2x-2=x(x+1)-2(x+1)=(x-2)(x+1)\)
c)
\(3x^2-11x+6=3x^2-9x-2x+6\)
\(=3x(x-3)-2(x-3)=(x-3)(3x-2)\)
d)
\(x^2+5x+8\): biểu thức không phân tích được thành nhân tử
e)
\(x^2+8x+7=x^2+x+7x+7\)
\(=x(x+1)+7(x+1)=(x+1)(x+7)\)
g)
\(x^2-6x-16=x^2-6x+9-25\)
\(=(x-3)^2-5^2=(x-3-5)(x-2+5)=(x-8)(x+2)\)
h)
\(4x^2-8x+3=4(x^2-2x+1)-1\)
\(=4(x-1)^2-1=(2x-2)^2-1^2=(2x-2-1)(2x-2+1)\)
\(=(2x-3)(2x-1)\)
i)
\(3x^2-11x+6=3x^2-9x-2x+6\)
\(=3x(x-3)-2(x-3)=(3x-2)(x-3)\)
a) \(x^2-6x+9=\left(x-3\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(\left(x-3\right)^2-16=\left(x-3-4\right)\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)
d) \(64+16x+x^2=\left(x+8\right)^2\)
e) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
f) mk chỉnh đề
\(8-36x+54x^2-27x^3=\left(2-3x\right)^3\)
g) \(8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14
a, \(x^6-x^4-9x^3+9x^2\)
= \(x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
=\(x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^4\left(x+1\right)-9x^2\right)\)
= \(\left(x-1\right)\left(x^5+x-9x^2\right)\)
b, \(x^4-4x^3+8x^2-16x+16\)
= \(x^4-4x^3+4x^2+4x^2-16x+16\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
c, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)
= \(\left(xy+4\right)^2-\left(2\left(x+y\right)\right)^2\)
= \(\left(xy-2x-2y+4\right)\left(xy+2x+2y+4\right)\)
= \(\left(x\left(y-2\right)-2\left(y-2\right)\right)\left(x\left(y+2\right)+2\left(y+2\right)\right)\)
=\(\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)
d, \(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)
= \(a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2ac-2bc-4b^2\)
=\(2a^2+2b^2+2c^2+4ac-4b^2\)
Chọn B
B