K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)

\(=\frac{x-1-2y+4+3z-9}{8}\)

\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)

Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)

\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)

\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

16 tháng 10 2019

\(2x^2+2y^2-3z^2=-100\left(1\right)\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)\(\left(2\right)\)

Thay (2) vào (1) ta được:

\(2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=-100\)

\(\Leftrightarrow18k^2+32k^2-75k^2=-100\)

\(\Leftrightarrow-25k^2=-100\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow k=\pm2\)

TH1: Thay k=2 vào (2) ta được

\(\left\{{}\begin{matrix}x=3.2=6\\y=4.2=8\\z=5.2=10\end{matrix}\right.\)

TH2: Thay k=-2 vào (2) ta được:

\(\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=4.\left(-2\right)=-8\\z=5.2\left(-2\right)=-10\end{matrix}\right.\)

Vậy \(\left(x,y,z\right)=\left\{\left(6,8,10\right);\left(-6,-8,-10\right)\right\}\)

16 tháng 10 2019

Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}.\)

=> \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

=> \(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)\(2x^2+2y^2-3z^2=-100.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\\\frac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow\left[{}\begin{matrix}z=10\\z=-10\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;8;10\right),\left(-6;-8;-10\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

1) Ta có: \(\frac{3x}{4}=\frac{2y}{3}=\frac{9z}{7}.\)

=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{7}{9}}\)

=> \(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}\)\(x+2y-3z=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}=\frac{x+2y-3z}{\frac{4}{3}+3-\frac{7}{3}}=\frac{18}{2}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{\frac{4}{3}}=9\Rightarrow x=9.\frac{4}{3}=12\\\frac{y}{\frac{3}{2}}=9\Rightarrow y=9.\frac{3}{2}=\frac{27}{2}\\\frac{z}{\frac{7}{9}}=9\Rightarrow z=9.\frac{7}{9}=7\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;\frac{27}{2};7\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{2x^3}{16}-\frac{3x^2}{12}+\frac{xyz}{60}=-108\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}=\frac{2x^3-3x^2+xyz}{16-12+60}=-\frac{108}{64}=-\frac{27}{16}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-\frac{27}{16}\Rightarrow x=-\frac{27}{16}.2=-\frac{27}{8}\\\frac{y}{5}=-\frac{27}{16}\Rightarrow y=-\frac{27}{16}.5=-\frac{135}{16}\\\frac{z}{6}=-\frac{27}{16}\Rightarrow z=-\frac{27}{16}.6=-\frac{81}{8}\end{matrix}\right.\)

Vậy...

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

19 tháng 9 2016

b) x = 3

y = 4

z = 7

19 tháng 9 2016

a,

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

Mà : x2+y2+z2=585

=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{25+49+9}=\frac{585}{93}=\frac{195}{31}\)

=> x=195/31.5

=> y=195/31.7

=> z=195/31.3

Xong :)

21 tháng 11 2019

BÀi 2:

Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)

a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)

b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)

c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)

d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)

21 tháng 11 2019

b)Vì BCNN(3;5) = 15

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy...

c)Vì BCNN(2;3;5) = 30

\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

WTFFFFFF>>>

d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính

e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)

Vậy...