Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Cho tam giác vuông ABC, góc A= 90 độ độ, AB=6cm, AC=8cm.?
hỏi a) Tính BC (dễ mình làm đc )
b) hạ AH vuông góc với BC,tính AH( giúp mình kĩ câu này)
nhớ giúp kĩ câu b thanks trước
Cập nhật: c, gọi M và N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình ? Tính diện tích của MNFE
Cập nhật 2: qua H kẻ HE vuông góc vs AB, HF vuông góc vs AC
b, áp dụng định lý py - ta - go ta có:
BC^2 = AB^2 + AC^2 => BC = 10
áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào tam giác ABC, ta được:
AB x AC = BC x AH
=> AH = AB x AC / BC = 6 x 8 / 10 = 4.8
câu C. hơi dài nên tôi sẽ cho bạn kết quả trước khi nào tôi rảnh tôi vào giải tỉ mỉ cho
nhớ cho tui 5 sao nhe
tứ giác MNFE là hình thang vuông
diện tích hình thang vuông
MNFE = 44.3
A B C D E I H 1 2 1 2 1 1 2 1
a) Từ I kẻ IH vuông góc với BC
Xét t/giác BID và BIH
có: \(\widehat{B_1}=\widehat{B_2}\)(gt)
BI: chung
\(\widehat{BDI}=\widehat{BHI}=90^0\)
=> t/giác BID = t/giác BID (ch.gn)
=> DI = IH (2 cạnh t/ứng) (1)
CMTT: t/giác ECI = t/giác HCI (ch - gn)
=> EI = IH (2)
Từ (1) và (2) => DI = IE
Nối A và I
TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)
Xét t/giác DAI và t/giác EIA
có: IA : chung
\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)
\(\widehat{DAI}=\widehat{AIE}\)(cmt)
=> t/goác DAI = t/giác EIA (ch - gn)
=> DI = EA; AD = EI (các cặp cạnh tương ứng)
mà DI = EI (cmt)
=> AE = AD (đpcm)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> BC2 = 62 + 82 = 100
=> BC = 10 (cm)
Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)
t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)
=> BD + EC = DH + HC = BC = 10 cm
Ta lại có: AB + AC = BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8
=> 2AD + 10 = 14
=> 2AD = 4 => AD = AE = 2 cm
A B C I D E K
a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)
=> AI là phân giác \(\widehat{A}\)
=> ID=IE (1)
\(\Delta ADI\)và \(\Delta AEI\)vuông cân
=> ID=AD; IE=AE (2)
Từ (1)(2) => ED=AE (đpcm)
b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC
=> BD=BK; CK=CE; AD=AE
\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)
Đặt AD=x => BK=6-x; CK=8-c
=> 6-x+8-x=10
=> x=2
Vậy AD=2cm
a) Vì I là giao điểm của tia phân giác B và C nên AI là tia phân giác ( tia phân giác thứ 3)
Xét tam giác ADI và tam giác AEI ta có :
AI chung ; góc IDA= góc AEI (=90 độ) ; góc DAI=góc AEI (AI phân giác)
=> Tam giác...=tam giác... (cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
b) Kẻ IF vuông góc BC
Xét tam giác BDI và tam giác BFI ta có
góc BDI=BFI(=90 độ) ; BI chung ; góc DBI= góc IBF (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> BD=BF( 2 cạnh tương ứng )
Xét tam giác CFI và tam giác CEI ta có
góc CFI=CEI(=90 độ) ; CI chung ; góc FCI= góc ECI (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> CE=CF( 2 cạnh tương ứng )
Ta có : BF+FC=BC
hay BD+EC=BC
Vậy BD+EC=BC
c) Xét tam giác ABC vuông tại A ta có
AB2+AC2=BC2
hay 62+82= BC2
=> BC2=100
=>BC=10 (cm)
Ta có BC= BD+CE (câu b)
= 6-AD+8-AE
=14-2AD
Hay 14-2AD=BC
14-2AD=10
2AD=14-10=4
=> AD=AE=2 (cm)
(Hình tự vẽ nha)
Xét \(\Delta ABD\)và \(\Delta HBD\)ta có :
\(\widehat{ABD}=\widehat{HBD}\)( Vì BD là tia phân giác ) (1)
\(BD:\)Cạnh chung (2)
\(\widehat{BAD}=\widehat{BHD}=90^o\) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta HBD\)( góc - cạnh-góc)
b) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh ở câu a)
\(\Rightarrow AB=HB\)( Cặp cạnh tương ứng )
\(\Rightarrow\Delta ABH\)Cân (1)
Ta lại có : BD là phân giác (2)
Từ (1) và (2)
=> BD là đường trung trực của AH
( Vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực)
c) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh câu a )
\(\Rightarrow AD=HD\)( Cặp cạnh tương ứng )
Xét \(\Delta ADK\)và \(\Delta HDC\)ta có :
\(\widehat{KDA}=\widehat{CDH}\)( đối đỉnh ) (1)
\(AD=HD\)(Chứng minh trên) (2)
\(\widehat{KAD}=\widehat{CHD}=90^o\)(GT ) (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ADK=\Delta HDC\)( Góc - cạnh góc )
\(\Rightarrow DK=DC\)( Cặp cạnh tương ứng )
d) Áp dụng định lí Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow BC=\sqrt{100}\)
\(\Rightarrow BC=10\)
Vì AB=HB ( Chứng minh ở câu b)
Mà \(AB=6cm\)
\(\Rightarrow HB=6cm\)
Ta có : \(HB+HC=BC\)
\(\Rightarrow6+HC=10\)
\(\Rightarrow HC=10-6\)
\(\Rightarrow HC=4cm\)
tự kẻ hình nghen
a)xét tam giác EBC và tam giác DCB có
BC chung
BEC=CDB(=90 độ)
EBC=DCB( tam giác ABC cân A)
=> tam giác EBC= tam giác DCB(ch-gnh)
=> BD= CE ( hai cạnh tương ứng)
b) từ tam giác EBC= tam giác DCB=> ECB=DBC( hai góc tương ứng)
=> tam giác HBC cân H
c) vì AH, BD, EC giao nhau tại H mà BD vuông góc với AC, CE vuông góc với AB=> AH vuông góc với BC ( 3 đường cao cùng đi qua một điểm)
gọi O là giao điểm của AH và BC
xét tam giác HBO và tam giác HCO có
HOB=HOC(=90 độ)
HB=HC( tam giác HBC cân H)
HBO=HCO( cmt)
=> tam giác HBO =tam giác HCO( ch-gnh)
=>BO=CO(hai cạnh tương ứng)=> O là trung điểm của BC
AH vuông góc với BC=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK (cgc)
=> CBD=CKD( hai góc tương ứng)
mà CBD=ECB( cmt)=> ECB=CKD
A B C I E H D
A B C D E I H
a) Ta có: BI là phân giác của ^ABC
CI là phân giác của ^ACB
=> AI là phân giác của góc A (t/c 3 đường phân giác)
D là hình chiếu của I trên AB=> ID vuông góc với AB tại D
E là hình chiếu của I trên AC=> IE vuông góc với AC tại E
Xét tam giác ADI và tam giác AEI có: ^IAD=^IAE
Cạnh AI chung => Tam giác ADI=Tam giác AEI (cạnh huyền góc nhọn)
^ADI=^AEI=90o
=> AD=AE (2 cạnh tương ứng) (đpcm)
b) Vẽ thêm hình phụ: Từ điểm I hạ tia IH giao BC tại H và IH vuông góc với BC
=> BH+CH=BC (t/c cộng đoạn thẳng) (1)
ID vuông góc với AB=> ^IDB=90o
IE vuông góc với AC=> ^IEC=90o
Xét tam giác BDI và tam giác BHI có: ^IDB=^IHB=90o
Cạnh BI chung => Tam giác BDI=Tam giác BHI (cạnh huyền góc nhọn)
^IBD=^IBH (BI phân giác của góc B)
=> BD=BH (2 cạnh tương ứng) (2)
Xét tam giác EIC và tam giác HIC có: ^IHC=^IEC=90o
Cạnh CI chung =>Tam giác EIC=Tam giác HIC (cạnh huyền góc nhọn)
^ICH=^ICE (CI là phân giác của góc C)
=> CE=CH (2 cạnh tương ứng) (3)
Từ (1);(2) và (3)=> BD+EC=BC (đpcm)
c) Tam giác ABC có góc A=90o => AB^2 + AC^2 = BC^2 (theo định lí Pytago)
Thay AB=6cm và AC=8cm vào biểu thức trên, ta có: 6^2 + 8^2 = BC^2 => 36+64=BC^2=> BC^2=100 (cm)
=> BC=\(\sqrt{100}=10\left(cm\right)\)
ĐS:...