Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=3/2 và y=5/2 vào (d3), ta được:
\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)
=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)
=>\(2m=-1\)
=>m=-1/2
c: (d3): y=2m+3x-1
=>y=m*2+3x-1
Tọa độ điểm mà (d3) luôn đi qua là:
\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)
=>(d3) không đi qua cố định bất cứ điểm nào
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay x=1 và y=2 vào (d1), ta được:
\(\left(m^2-1\right)+m^2-5=2\)
=>\(2m^2=8\)
=>\(m^2=4\)
=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}x+y=2\\2x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-4\end{matrix}\right.\)
Thay x=6 và y=-4 vào (d3), ta được:
\(3\cdot6+2\cdot\left(-4\right)=10\left(đúng\right)\)
Vậy: (d3) đi qua giao điểm của (D1) và (D2)
Tọa độ giao điểm của (d1) và (d3) là:
\(\left\{{}\begin{matrix}2x-1=-x+3\\y=-x+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=4\\y=-x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{4}{3}+3=\dfrac{5}{3}\end{matrix}\right.\)
Thay x=4/3 và y=5/3 vào (d2), ta được:
\(\dfrac{4}{3}\left(2n-1\right)+\dfrac{3}{2}=\dfrac{5}{3}\)
=>\(\dfrac{8}{3}n-\dfrac{4}{3}+\dfrac{3}{2}=\dfrac{5}{3}\)
=>\(\dfrac{8}{3}n=\dfrac{5}{3}+\dfrac{4}{3}-\dfrac{3}{2}=\dfrac{3}{2}\)
=>\(n=\dfrac{3}{2}:\dfrac{8}{3}=\dfrac{3}{2}\cdot\dfrac{3}{8}=\dfrac{9}{16}\)
xét phương trình hoành độ giao điểm giữa (d2) và (d3) ta có:
\(-2x=9-5x\)\(\Leftrightarrow x=3\)
thay vào (d2) ta có: y=-6
=>điểm (3;-6) là giao điểm của (d2) và (d3)
để 3 đường thẳng đồng quy thì:
(3;-6) thuộc (d3)
=> -6=(m+1)3-2m-5
<=> -6=m-2
<=>m=-4
vậy m=-4 thì 3 đường thẳng đồng quy
\(y=\left(m+1\right)x-2m-5\left(d_1\right)\)
\(y=-2x\left(d_2\right)\)
\(y=9-5x\left(d_3\right)\)
Hoành độ giao điểm của \(\left(d_2\right),\left(d_3\right)\)là nghiệm của phương trình.
\(-2x=9-5x\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Thay \(x=3\)vào \(\left(d_2\right)\)ta được: \(y=-6\)
\(\Rightarrow A\left(3;-6\right)\)là giao điểm của \(\left(d_2\right),\left(d_3\right)\)
Để \(\left(d_1\right),\left(d_2\right),\left(d_3\right)\)đồng quy thì:
\(\Leftrightarrow\left(d_1\right)\)di qua \(A\left(3;-6\right)\)
\(\Leftrightarrow-6=\left(m+1\right).3-2m-5\)
\(\Leftrightarrow3m+3-2m-5+6=0\)
\(\Leftrightarrow m+4=0\)
\(\Leftrightarrow m=-4\)
Vậy ............
có bn