K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2022

a) Xét △BEM và △BHA có:

        \(\hat{B}\): chung

       \(\hat{BEM}=\hat{BHA}\) = 90o

  Do đó: △BEM đồng dạng △BHA (gg)

  => \(\dfrac{BE}{BH}=\dfrac{BM}{BA}\) => BE.BA = BH.BM

b) Theo câu a), ta có: 

    BE.BA = BH.BM

=> \(\dfrac{BE}{BM}=\dfrac{BH}{BA}\)

Lại có:  \(\hat{B}\): chung

nên △BEH đồng dạng △BMA (cgc)

=> \(\hat{BHE}=\hat{BAM}\)

Vì AM là tia phân giác của \(\hat{BAC}\) nên \(\hat{BAM}=\dfrac{\hat{BAC}}{2}=\dfrac{90^o}{2}=45^0\)

=> \(\hat{BHE}=45^0\)

mà \(\hat{BHA}=90^o\)

Nên HE là tia phân giác góc AHB.

13 tháng 12 2016

x=5.5

13 tháng 12 2016

x=5.5 hoac x=1

25 tháng 12 2016

Ta có \(a^2+b^2+c^2+ab+bc+ac\ge6\)

\(=>2\left(a^2+b^2+c^2+ab+bc+ac\right)\ge12\)

\(=>2a^2+2b^2+2c^2+2ab+2bc+2ac\ge12\)

\(=>a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Do \(a+b+c=3\)

\(=>\left(a+b+c\right)^2=9\\ =>a^2+b^2+c^2+2ab+2bc+2ac=9\)

Thế vào biểu thức \(a^2+b^2+c^2+a^2+b^2+c^2+2ab+2bc+2ac\ge12\)

Ta có \(a^2+b^2+c^2+9\ge12\)

\(=>a^2+b^2+c^2\ge3\) (1)

Ta có \(\begin{cases}a^2+b^2+c^2+2ab+2bc+2ac=9\\a^2+b^2+c^2+ab+bc+ac\ge6\end{cases}\)

\(=>\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+ac+bc\right)\ge3\)

\(=>\left(2ab+2ac+2bc\right)-\left(ab+ac+bc\right)\ge3\)

\(=>ab+bc+ac\ge3\) (2)

Từ (1) và (2)

\(=>a^2+b^2+c^2+ab+bc+ac\ge6\)

 

Tham khảo bài làm :

Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath

7 tháng 6 2017

Áp dụng BĐT Cauchy Schwarz và BĐT \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\), ta có:

\(\left(2^2+2^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(2a^2+2b^2\right)^2\)\(\ge\left[2\times\dfrac{1}{2}\left(a+b\right)^2\right]^2=\left(a+b\right)^4\)

\(\Leftrightarrow a^4+b^4\ge\dfrac{\left(a+b\right)^4}{8}\)

Dấu "=" xảy ra khi a = b

7 tháng 6 2017

Áp dụng BĐT Bunhiacopxki,ta có:

\(a^4+b^4\) \(\geq\) \(\dfrac{\left(a^2+b^2\right)^2}{2}\) \(\geq\) \(\dfrac{\left(\dfrac{1}{2}\left(a+b\right)^2\right)^2}{2}\) = \(\dfrac{\dfrac{1}{4}\left(a+b\right)^4}{2}\) = \(\dfrac{\left(a+b\right)^4}{8}\)

Dấu = xảy ra khi a=b

20 tháng 2 2017

1

17 tháng 12 2016

có x2-x-1=0

xét tử ta có

x6-3x5+3x4-x3+2015