K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Thay x=0 và y=0 vào (d), ta được:

\(2m\cdot0+3-m-0=0\)

\(\Leftrightarrow3-m=0\)

hay m=3

c) Thay x=2 và y=0 vào (d), ta được:

\(2m\cdot2+3-m-2=0\)

\(\Leftrightarrow3m=-1\)

hay \(m=-\dfrac{1}{3}\)

14 tháng 2 2022

à, bạn định đưa câu hỏi Tón vui lên ho các bạn trả lời xong rồi chép vô để đạt 2 tháng Vid nè

14 tháng 2 2022

bạn khôn thế quê mình đầy

4 tháng 10 2017

Biểu thức có nghĩa \(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left|x\right|>1\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

12 tháng 9 2018

\(\sqrt{49}=7\)

Vì 72 = 49

12 tháng 9 2018

Sửa : \(\pm\sqrt{49}=\pm7\)

Lúc nãy làm nhầm 

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>AE\(\perp\)MB tại E

Xét tứ giác MCAE có \(\widehat{MCA}+\widehat{MEA}=90^0+90^0=180^0\)

nên MCAE là tứ giác nội tiếp

b: Xét (O) có

ΔBFA nội tiếp

BA là đường kính

Do đó: ΔBFA vuông tại F

Xét ΔBEA vuông tại E và ΔBCM vuông tại C có

\(\widehat{EBA}\) chung

Do đó: ΔBEA~ΔBCM

=>\(\dfrac{BE}{BC}=\dfrac{BA}{BM}\)

=>\(BE\cdot BM=BA\cdot BC\left(1\right)\)

Xét ΔBFA vuông tại F và ΔBCN vuông tại C có

\(\widehat{FBA}\) chung

Do đó: ΔBFA~ΔBCN

=>\(\dfrac{BF}{BC}=\dfrac{BA}{BN}\)

=>\(BF\cdot BN=BA\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BE\cdot BM=BF\cdot BN\)

\(\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

Vậy GTLN của biểu thức là \(\dfrac{4}{3}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{1}{4}\)

NV
4 tháng 1 2019

x\(x\ge0\)

\(x-\sqrt{x}+1=\sqrt{x}^2-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{x-\sqrt{x}+1}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(\Rightarrow\) biểu thức đạt GTLN bằng \(\dfrac{4}{3}\) khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

5 tháng 8 2019

1.

2x - x2 - 10

= - (x2 - 2x + 10)

\(=\left[\left(x^2-2x+1\right)+9\right]\)

= - (x - 1)2 - 9

Vì - (x - 1)2 \(\le\) 0 vs mọi x và - 9 < 0

nên - (x - 1)2 - 9 < 0

hay 2x - x2 - 10 < 0

5 tháng 8 2019

giờ trễ rồi nên mai mình lm tiếp cho nha!

Tìm MIN :

a) \(9x^2-4x+11=\left(3x\right)^2-2.3x.\frac{4}{6}+\frac{4}{9}-\frac{95}{9}\)

\(=\left(3x-\frac{4}{6}\right)^2-\frac{95}{9}\ge\frac{95}{9}\)

Dấu "=" xảy ra \(\Leftrightarrow x=?\)

\(2x-x^2-10=-\left(x^2-2x+1\right)+9=-\left(x-1\right)^2+9\ge0\)