Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ:
3 x + y x − y = a 2 x − y − a x y − x = − 1 ⇔ 3 x x − y + 3 y x − y = a 2 x y − x − y y − x − a x y − x = − 1 ⇔ 3 x x − y + 3 y x − y = a − 2 x y − x + y y − x + a x y − x = − 1
Điều kiện: x ≠ y
Đặt u = x x − y ; v = y x − y , hệ phương trình trở thành:
3 u + 3 v = a − 2 u + v + a u = − 1 ⇔ 3 u + 3 v = a a − 2 u + v = − 1
Ta có: D = 3 3 a − 2 1 = 3 − 3 a + 6 = 9 − 3 a
Hệ phương trình có nghiệm duy nhất ⇔ D ≠ 0 ⇔ 9 − 3 a ≠ 0 ⇔ a ≠ 3
Đáp án cần chọn là: B
Ta có: D = m m + 2 1 m = m 2 − m − 2
D x = 5 m + 2 2 m + 3 m = 5 m − ( m + 2 ) ( 2 m + 3 ) = − 2 m 2 − 2 m − 6
D y = m 5 1 2 m + 3 = 2 m 2 + 3 m − 5
Để hệ phương trình có nghiệm duy nhất thì D ≠ 0 ⇔ m 2 − m − 2 ≠ 0 ⇔ m ≠ − 1 m ≠ 2
Khi đó: x = D x D = − 2 ( m 2 + m + 3 ) m 2 − m − 2 ; y = D y D = 2 m 2 + 3 m − 5 m 2 − m − 2
Để hệ phương trình có nghiệm âm thì: − 2 ( m 2 + m + 3 ) m 2 − m − 2 < 0 ( 1 ) 2 m 2 + 3 m − 5 m 2 − m − 2 < 0 ( 2 )
1 ⇔ m 2 + m + 3 m 2 − m − 2 > 0 ⇔ m 2 − m − 2 > 0 ( v ì m 2 + m + 3 = m + 1 2 2 + 11 4 > 0 , ∀ m )
⇔ m < − 1 m > 2 *
2 ⇔ 2 m 2 + 3 m − 5 > 0 m 2 − m − 2 < 0 2 m 2 + 3 m − 5 < 0 m 2 − m − 2 > 0 ⇔ m < − 5 2 m > 1 − 1 < m < 2 − 5 2 < m < 1 m < − 1 m > 2 ⇔ 1 < m < 2 − 5 2 < m < − 1 * *
Từ (*) và (**) suy ra − 5 2 < m < − 1
Đáp án cần chọn là: D
Hệ: m x + 3 m − 2 y + m − 3 = 0 2 x + m + 1 y − 4 = 0 ⇔ m x + 3 m − 2 y = 3 − m 2 x + m + 1 y = 4
Ta có:
D = m 3 m − 2 2 m + 1 = m 2 − 5 m + 4 = m − 1 m − 4
D x = 3 − m 3 m − 2 4 m + 1
= 3 − m m + 1 − 4 3 m − 2 = − m + 11 = 1 − m m + 11
D y = m 3 − m 2 4 = 4 m − 6 + 2 m = 6 m − 6 = 6 m − 1
Hệ phương trình có nghiệm duy nhất
⇔ D ≠ 0 ⇔ m − 1 m − 4 ≠ 0 ⇔ m ≠ 1 m ≠ 4
⇒ x = D x D = 1 − m m + 11 m − 1 m − 4 = m + 11 4 − m ( 1 ) y = D y D = 6 m − 1 m − 1 m − 4 = 6 m − 4 ( 2 )
Từ 2 ⇒ m − 4 y = 6 ⇔ m y = 6 + 4 y ⇔ m = 6 + 4 y y = 6 y + 4
Thay vào (1) ta được:
x = 6 y + 4 + 11 : 4 − 6 y − 4 = − 6 + 15 y 6 = − 1 − 15 6 y
Đáp án cần chọn là: C
Chọn B
Giả sử hệ bpt có nghiệm duy nhất thì
Suy ra: 8m2 - 26m + 15= 0 hay m= ¾ hoặc m= 5/2
Thử lại
+ Với m= ¾ thỏa mãn hệ bpt
+ Với m= 5/2 không thỏa mãn hệ bpt
Vậy m= ¾ là giá trị cần tìm
Ta có: D = m 1 1 m = m 2 - 1
Hệ có nghiệm duy nhất khi D ≠ 0 ⇔ m 2 - 1 ≠ 0 ⇔ m ≠ ± 1
Chọn C.
Ta có: D = m 1 1 m = m 2 - 1
Hệ phương trình có nghiệm duy nhất ⇔ D ≠ 0 ⇔ m 2 - 1 ≠ 0 ⇔ m ≠ ± 1
Đáp án cần chọn là: C
D = a + b a − b a 3 + b 3 a 3 − b 3 = a + b a 3 − b 3 − a − b a 3 + b 3
= a + b a − b a 2 + a b + b 2 − a − b a + b a 2 − a b + b 2
= a + b a − b a 2 + a b + b 2 − a 2 + a b − b 2 = 2 a b a + b a − b
D x = 2 a − b 2 ( a 2 + b 2 ) a 3 − b 3 = 2 a 3 − b 3 − 2 a − b a 2 + b 2
= 2 a − b a 2 + a b + b 2 − 2 a − b a 2 + b 2 = 2 a b ( a − b )
D y = a + b 2 a 3 + b 3 2 ( a 2 + b 2 ) = 2 a + b a 2 + b 2 − 2 ( a 3 + b 3 )
= 2 a + b a 2 + b 2 − 2 a + b a 2 − a b + b 2 = 2 a b ( a + b )
Với a ≠ b ; a , b ≠ 0 ⇒ D ≠ 0 , hệ phương trình có nghiệm duy nhất
x = D x D = 2 a b a − b 2 a b a − b a + b = 1 a + b x = D y D = 2 a b a + b 2 a b a − b a + b = 1 a − b
Đáp án cần chọn là: B
\(\left\{{}\begin{matrix}2x^3+x^2y=3\left(1\right)\\2y^3+xy^2=3\end{matrix}\right.\)
Trừ vế theo vế hai phương trình ta được:
\(2\left(x^3-y^3\right)+\left(x^2y-xy^2\right)=0\)
\(\Leftrightarrow2\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+3xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\right]=0\left(2\right)\)
Do \(2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2\ge0\), đẳng thức xảy ra khi \(x=y=0\)
Thay vào phương trình ta thấy \(x=y=0\) không phải là nghiệm
\(\Rightarrow2\left(x+\dfrac{9}{16}y\right)^2+\dfrac{7}{8}y^2>0\)
Khi đó \(\left(2\right)\Leftrightarrow x=y\)
\(\left(1\right)\Leftrightarrow2x^3+x^3=3\Leftrightarrow x=y=1\)
\(\Rightarrow x_0^3+y_0^3=2\)
tập làm quen gõ công thức toán học đi bạn? :D