K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

b = c.tgβ = c.cotgα

29 tháng 3 2018

b = asin α = acosβ; c = asinβ = acosα

24 tháng 4 2017

a) b = a sin α = a cos β
c = a sin β = a cos α

b) b = c tg α = c cotg β
c = b tg β = b cotg α

24 tháng 4 2017

a) b = asin α = acosβ; c = asinβ = acosα

b) b = c.tgβ = c.cotgα

13 tháng 4 2018

sinB = b/a; cosB = c/a; tgB = b/c; cotgB = c/b

sinC = c/a; cosC = b/a; tgC = c/b; cotgB = b/c

a) b = a.(b/a) = a.sinB = a.cosC

c = a. (c/a) = a.cosB = a.sinC

b) b = c. (b/c) = c.tgB = c.cotgC

c = b.(c/b) = b.cotgB = b.tgC

20 tháng 3 2018

sinB = b/a; cosB = c/a; tgB = b/c; cotgB = c/b

sinC = c/a; cosC = b/a; tgC = c/b; cotgB = b/c

b = a.(b/a) = a.sinB = a.cosC

c = a. (c/a) = a.cosB = a.sinC

1 tháng 1 2017

b = c. (b/c) = c.tgB = c.cotgC

c = b.(c/b) = b.cotgB = b.tgC

25 tháng 11 2020

- Giả sử tam giác ABC vuông tại A . Theo bài ra , ta có :

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\left(1\right)\)

- Áp dụng đlí Py - ta - go cho tam giác vuông ABC ( \(\widehat{A}=90^o\)

Ta có : \(BC^2=AB^2+AC^2\)

           \(\Leftrightarrow125^2=\left(\frac{3}{4}AC\right)^2+AC^2\)

           \(\Leftrightarrow15625=\frac{9}{16}AC^2+AC^2\)

           \(\Leftrightarrow15625=\left(\frac{9}{16}+1\right)AC^2\)

            \(\Leftrightarrow\frac{25}{16}AC^2=15625\)

            \(\Leftrightarrow AC^2=\frac{15625.16}{25}\)

           \(\Leftrightarrow AC=\sqrt{\frac{15625.16}{25}}=\frac{125.4}{5}=100\left(cm\right)\)

Thay AC = 100cm vào (1) , ta được :

\(AB=\frac{3}{4}.100=75\left(cm\right)\)

- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) đường cao AH , ta có :

\(AB^2=BH.BC\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{75^2}{125}=45\left(cm\right)\)

Ta lại có : BC = BH + HC

                125 = 45 + HC

                HC = 125 - 45 = 80 ( cm )

Vậy : AB = 75 cm

         AC = 100 cm

         HC = 80 cm

         BH = 45 cm

14 tháng 5 2019

sin α = cos β;         cos α = sin β

tg α = cotg β;         cotg α = tgβ