Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)
- \(x\) - 2 = - \(\dfrac{18}{7}\)
\(x\) = - 2 + \(\dfrac{18}{7}\)
\(x\) = - \(\dfrac{4}{7}\)
Bài b, \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)
12 = 7 - \(x\)
\(x\) = 7 - 12
\(x\) = -5
Bài 2:
1: \(\dfrac{x}{12}-\dfrac{5}{6}=\dfrac{1}{12}\)
=>\(\dfrac{x}{12}=\dfrac{1}{12}+\dfrac{5}{6}=\dfrac{1}{12}+\dfrac{10}{12}=\dfrac{11}{12}\)
=>x=11
2: \(\dfrac{2}{3}-1\dfrac{4}{15}x=-\dfrac{3}{5}\)
=>\(\dfrac{2}{3}-\dfrac{19}{15}x=-\dfrac{3}{5}\)
=>\(\dfrac{19}{15}x=\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10+9}{15}=\dfrac{19}{15}\)
=>\(x=\dfrac{19}{15}:\dfrac{19}{15}=1\)
3: \(\dfrac{\left(-3\right)^x}{81}=-27\)
=>\(\left(-3\right)^x=\left(-3\right)^3\cdot\left(-3\right)^4=\left(-3\right)^7\)
=>x=7
4: \(\left|x+0,237\right|=0\)
=>x+0,237=0
=>x=-0,237
5: \(\left(x-1\right)^2=25\)
=>\(\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
6: \(\left|2x-1\right|=5\)
=>\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
7: \(\left(x-1\right)^3=-\dfrac{8}{27}\)
=>\(\left(x-1\right)^3=\left(-\dfrac{2}{3}\right)^3\)
=>\(x-1=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}+1=\dfrac{1}{3}\)
8: \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
=>\(\dfrac{5}{3}:\dfrac{x}{4}=20\)
=>\(\dfrac{20}{3x}=20\)
=>3x=20/20=1
=>\(x=\dfrac{1}{3}\)
9: \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:2\dfrac{2}{3}\)
=>\(\dfrac{\dfrac{8}{3}}{x}=\dfrac{\dfrac{16}{9}}{\dfrac{8}{3}}\)
=>\(\dfrac{16}{9}\cdot x=\dfrac{8}{3}\cdot\dfrac{8}{3}=\dfrac{64}{9}\)
=>16x=64
=>x=64/16=4
Bài 3:
1: Ta có: x-24=y
=>x-y=24
mà \(\dfrac{x}{7}=\dfrac{y}{3}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
=>\(x=6\cdot7=42;y=6\cdot3=18\)
2: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}\)
mà x-y=48
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{x-y}{5-7}=\dfrac{48}{-2}=-24\)
=>\(x=-24\cdot5=-120;y=-24\cdot7=-168;z=-24\cdot2=-48\)
3: \(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}\)
mà x-y=4009
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{4009+2}{4011}=1\)
=>\(x-1=2005;3-y=2006\)
=>x=2005+1=2006; y=3-2006=-2003
5: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
mà 2x+3y-z=-14
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{2\cdot3+3\cdot5-7}=\dfrac{-14}{14}=-1\)
=>\(x=-3;y=-5;z=-7\)
Bạn tách ra từng CH khác nhau đi nhé. Gộp 1 trong tất cả rất khó nhìn và lâu.
Cách 1:
A=(3+ 1/2 -2/3 ) -( 2- 2/3 +5/2) - (5- 5/2 + 4/3)
A=17/6-23/6-23/6
A=-29/6
Cách 2:
A=(3+ 1/2 -2/3 ) -( 2- 2/3 +5/2) - (5- 5/2 + 4/3)
A=3+ 1/2 -2/3 - 2+ 2/3 -5/2 - 5+ 5/2 - 4/3
A=-29/6
cách 1:
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)-\left(5-\frac{5}{2}+\frac{4}{3}\right)\)
\(=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}=-4+\frac{1}{2}-\frac{4}{3}\)
\(=\frac{-24}{6}+\frac{3}{6}-\frac{8}{6}=-\frac{29}{6}\)
cách 2:
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)-\left(5-\frac{5}{2}+\frac{4}{3}\right)\)
\(=\left(\frac{18}{6}+\frac{3}{6}-\frac{4}{6}\right)-\left(\frac{12}{6}-\frac{4}{6}+\frac{15}{6}\right)-\left(\frac{30}{6}-\frac{15}{6}+\frac{8}{6}\right)\)
\(=\frac{17}{6}-\frac{23}{6}-\frac{23}{6}=-\frac{29}{6}\)
\(-\frac{1}{21}-\frac{1}{28}=-\frac{4}{84}-\frac{3}{84}=-\frac{7}{84}=-\frac{1}{12}\)
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
Cách 1: = ( 36/6 - 4/6 + 3/6 ) - ( 30/6 + 10/6 - 9/6 ) - ( 18/6 - 14/6 + 15/6 )
= 35/6 - 31/6 - 19/6
= -5/2
Cách 2: = 6 - 2/3 + 1/2 - 5 - 5/3 + 3/2 -3 + 7/3 - 5/2
= ( 6 - 5 - 3 ) + ( -2/3 - 5/3 + 7/3 ) + ( 1/2 + 3/2 - 5/2 )
= -2 + 0 + -1/2
= -5/2
- Ta có: \(\widehat{xOz}=180^o-\widehat{zOb}\) (Hai góc kề bù)
\(\widehat{zOb}=180^o-\widehat{xOz}\)
- Vì Oy là tia phân giác của góc xOz
\(\Rightarrow\widehat{xOy}=\widehat{yOz}=\frac{\widehat{xOz}}{2}=\frac{180^o-\widehat{zOb}}{2}=90^o-\frac{1}{2}\widehat{zOb}\) (1)
- Vì Oa là tia phân giác của góc zOb
\(\Rightarrow\widehat{zOa}=\widehat{aOb}=\frac{\widehat{zOb}}{2}=\frac{180^o-\widehat{xOz}}{2}=90^o-\frac{1}{2}\widehat{xOz}\) (2)
- Từ (1) và (2), suy ra:
\(\widehat{yOz}+\widehat{zOa}=90^o-\frac{1}{2}\widehat{zOb}+90^o-\frac{1}{2}\widehat{xOz}\)
\(\Rightarrow\widehat{yOa}=180^o-\frac{1}{2}\left(\widehat{zOb}+\widehat{xOz}\right)\)
\(\Rightarrow\widehat{yOa}=180^o-\frac{1}{2}\left(180^o\right)\)
\(\Rightarrow\widehat{yOa}=180^o-90^o\)
\(\Rightarrow\widehat{yOa}=90^o\)
\(\Rightarrow Oy\perp Oa\Rightarrowđpcm\)
(2+1) (2^2 +1 ) ( 2^4 + 1 ) ( 2^8 + 1 ) ( 2^16 +1 )= (2-1)(2+1) ......(2^16+1) = ( 2^2 - 1 ) ( 2^2 + 1 ) (2^4 +1 ) .........(2^16 + 1 )
nay chắc là bạn lên lớp 8 nhỉ ? bài này áp dụng Hằng đẳng thức ( a - b ) ( a + b ) = a^2 + b^2 từ đó bạn tiếp tục làm bài trên đi nhá
bài này dễ nha : HA NOI
( 2+ 1 ) . ( 2^2 + 1 ) ( 2^4 + 1 ) . ( 2^8 + 1 ) ( 2^16 + 1 )
= ( 2 - 1 ) . ( 2 + 1 ) ( 2^2 + 1 ) ( 2^4 + 1 ) ( 2^8 + 1 )
= ( 2^2 - 1 ) ( 2^2 + 1 ) ( 2^4 + 1 ) ( 2^8 + 1 )
= ( 2^4 - 1 ) ( 2^4 + 1 ) ( 2^8 + 1 )
= ( 2^8 - 1 ) ( 2^8 + 1 )
= 2^16 - 1