K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)\(3:2 = 1,5\,\,\,\,\,\,\,\,\,\,\,37:25 = 1,48\,\,\,\,\,\,\,\,5:3 = 1,666...\,\,\,\,\,\,1:9 = 0,111...\)

b) \(\frac{3}{2} = 1,5;\,\,\,\,\frac{{37}}{{25}} = 1,48;\,\,\,\,\frac{5}{3} = 1,666...;\,\,\,\frac{1}{9} = 0,111...\)

Chú ý: Các phép chia không bao giờ dừng ta viết ba chữ số thập phân sau dấu phẩy và sau đó thêm dấu ba chấm phía sau.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)0,36.\frac{{ - 5}}{9}\\ = \frac{{36}}{{100}}.\frac{{ - 5}}{9}\\ = \frac{9}{{25}}.\frac{{ - 5}}{9}\\ = \frac{{ - 1}}{5}\\b)\frac{{ - 7}}{6}:1\frac{5}{7}\\ = \frac{{ - 7}}{6}:\frac{{12}}{7}\\ = \frac{{ - 7}}{6}.\frac{7}{{12}}\\ = \frac{{ - 49}}{{72}}\end{array}\)

Chú ý: Khi tính toán, nếu phân số chưa ở dạng tối giản thì ta nên rút gọn về dạng tối giản để tính toán thuận tiện hơn.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)0,25 + 1\frac{5}{{12}} = \frac{{25}}{{100}} + \frac{{17}}{{12}}\\ = \frac{1}{4} + \frac{{17}}{{12}} = \frac{3}{{12}} + \frac{{17}}{{12}}\\ = \frac{{20}}{{12}} = \frac{5}{3}\\b) - 1,4 - \frac{3}{5}\\ = \frac{{ - 14}}{{10}} - \frac{3}{5} = \frac{{ - 7}}{5} - \frac{3}{5}\\ = \frac{{ - 10}}{5} =  - 2\end{array}\)

21 tháng 10 2016

2 a 8,5:3=2,8(3) b.18,7:6=3,11(6) c.58:11=5,(27) d.14,2:3,33=4,(264)

3a.0,32=8/25 b.-0,124=-31/250 c1,28=32/25 d,-3,12=-78/25

4

1/99=0.(01) 1/999=0,(001)

đúng thì tích nha

 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\frac{{12}}{{25}} = 0,48;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{27}}{2} = 13,5;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{10}}{9} = 1,(1)\)

11 tháng 10 2015

Phân số hữu hạn:

5/8 =0,265vì 8=2^3

-3/20=-0,15 vì 2^.5

14/25=0,56 vì 25=5^2

Phấn số thập phân vô hạn tuần hoàn là:

4/11=0,(36)  vì 11=11

15/22 =0,68(18)vì 22=2.11

-7/12=-0,58(3) vì 12=2^2.3

 

 

4 tháng 10 2016

1) Vì mẫu của chúng không chứa ước nguyên tố khác 2 và 5:

3/8 có mẫu 8 = 2^3

-7/5 có mẫu 5 = 5

13/20 có mẫu 20 = 2^2 . 5

-13/125 có mẫu 125 = 5^3

Nên: các phân số trên viết được dưới dạng số thập phân hữu hạn

Ta có: 3/8 = 0,375

-7/5 = -1,4

13/20 = 0,65

-13/125 = -0,104

 

18 tháng 5 2016
  1. Giải thích: Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 8 = 23, 5, 20 = 22.5, 125 = 53 đều không chứa thừa số nguyên tố nào khác 2 và 5 nên chúng được viết dưới dạng số thập phân hữu hạn.

    3/8 = 0,375  ; 7/5 = -1,4;  13/20 = 0,65 ; 13/125 = -0,104

18 tháng 5 2016

b. Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 12=22.3, 22=2.11, 35=7.5, 65 = 5.13 đều có chứa thừa số nguyên tố khác 2 và 5 nên chúng được viết dưới dạng số thập phân vô hạn tuần hoàn 

ta được : \(\frac{5}{12}=0.41\left(6\right);\frac{29}{22}=1.3\left(18\right);\frac{27}{35}=0.7;\frac{51}{65}=0.8\)

27 tháng 5 2019

Bài 1:

Ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)

=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)

=> ab = 92

Bài 2:

Hữu hạn: -7/16; 2/125; -9/8

Vô hạn tuần hoàn: -5/3; 5/6; -3/11

Chúc bạn học tốt !!!

28 tháng 5 2019

Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)

\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)

Vậy \(\overline{ab}=92\)

Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên  phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)

          Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)