K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

98   <1

99

98.99+1     Vì 98.99+1 >98.99 nên 98.99+1   >1

98.99                                             98.99

Suy  ra: 98     <    98.99+1  

            99            98.99

              

18 tháng 6 2018

A= \(\frac{98}{99}\)\(1\)

B= \(\frac{98.99+1}{98.99}\)=\(\frac{98.99}{98.99}+\frac{1}{98.99}\)=\(1+\frac{1}{98.99}\)> 1

=> A<1<B => A<B

26 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

26 tháng 5 2017

Giải 

A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1-1/100=99/100

Chú thích:1/2 là 1 phần 2

23 tháng 9 2015

\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{3}-\frac{1}{100}\)

\(\frac{97}{300}\)

3 tháng 5 2019

A = 9(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\))

A = 9(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\))

A = 9(1 - \(\frac{1}{100}\))

A = 9.\(\frac{99}{100}\)=\(\frac{891}{100}\)=8,91

\(\frac{1}{1.2}=\frac{1}{2}\)

\(\frac{1}{1}-\frac{1}{2}=\frac{2}{2}-\frac{1}{2}=\frac{1}{2}\)

Nên trong bài toán: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

Mấy cái kia cũng vậy nên bạn yên tâm nha!!!!

4 tháng 5 2019

A : 9 = 1/1.2 + 1/2.3 + 1/3.4 + ..... + 1/98.99 + 1/99.100

A : 9 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/98 - 1/99 + 1/99 - 1/100

A : 9 = 1 - 1/100

A : 9 = 100/100 - 1/100

A : 9 = 99/100

A = 9 . 99/100

A = 891/100 = 8,91 = 8 91/100

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

14 tháng 10 2016

Ta có : \(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\right)\)

\(\Rightarrow S=2.\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)

21 tháng 4 2017

=2.(1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+.........+\(\frac{1}{99}\)-\(\frac{1}{100}\))

=2.(1-\(\frac{1}{100}\))

S= 2.\(\frac{99}{100}\)

S=\(\frac{99}{50}\)

11 tháng 3 2017

Bài 1:

Ta thấy A < 1

=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy A < B

Bài 2:

Ta thấy C < 1

=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)

Vậy C < D

13 tháng 4 2016

A=\(\frac{98^{99}+1}{98^{89}+1}>1\) =>\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}\)

                                     \(=\frac{98.\left(98^{98}+1\right)}{98.\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)

Vậy C>D

23 tháng 4 2016

=9.(1/1.2 + 1/2.3+ 1/3.4 +...........+1/99.100)

=9(1-1/100)

=9.99/100

23 tháng 4 2016

ko viết lại đầu bài đâu nhé

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=9\left(1-\frac{1}{100}\right)\)

\(=9\times\frac{99}{100}\)

\(=\frac{891}{100}\)