K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2022

Nếu đề là \(f\left(x\right)=\sqrt{x^2+2x+1}\) và \(g\left(x\right)=4x^2-5x^2+1\left(???\right)\) thì cả \(f\left(x\right)\) và \(g\left(x\right)\) đều liên tục trên R

NV
18 tháng 3 2021

1. Hàm không liên tục tại  \(x=-1\) nên đáp án A sai

2. Hàm liên tục tại \(x=0,5\)

3. Đề thiếu

4. \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=3.\left(-2\right)-5=-11\)

\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=-2a-1\)

Hàm liên tục tại x=-2 khi: 

\(-2a-1=-11\Rightarrow a=-5\)

10 tháng 3 2017

Chọn B.

Hàm số có nghĩa khi .

Vậy theo định lí ta có hàm số  liên tục trên khoảng (-∞; -3); (-3; -2) và (-2; +∞).

a: TXĐ: D=R

x^2;sin x đều liên tục trên R

=>f(x) liên tục trên R

b: TXĐ: D=R\{1}

x^4;-x^2;6/x-1 đều liên tục khi x thuộc (-vô cực;1) hoặc (1;+vô cực)

=>g(x) liên tục trên (-vô cực;1) và (1;+vô cực)

c: ĐKXĐ: x<>3; x<>-4

HS \(\dfrac{2x}{x-3}\) liên tục trên (-vô cực;3) và (3;+vô cực)

(x-1)/(x+4) liên tục trên (-vô cực;-4) và (-4;+vô cực)

=>h(x) liên tục trên từng khoảng xác định của nó

6 tháng 2 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tập xác định của hàm số là D = R

- Nếu x ≠ √2 thì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng (-∞; √2) và (√2; +∞)

- Tại x = √2:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số liên tục tại x = √2

Kết luận : y = f(x) liên tục trên R

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).

Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).

b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)

Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định

Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)

Hàm số \(\frac{{2x}}{{x - 3}}\)  liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)

Hàm \(\frac{{x - 1}}{{x + 4}}\)  liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng  \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)

20 tháng 9 2018

Xét tính liên tục của hàm số sau trên tập xác định của nó:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

● Hàm số liên tục với mọi x ≠ 3.

● Tại x = 3, ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

⇒ Hàm số không liên tục tại x = 3.

- Vậy hàm số liên tục trên các khoảng (-∞ ; 3), (3 ; +∞).

6 tháng 11 2018

Hàm số liên tục trên R

11 tháng 9 2017

7 tháng 3 2023

`TXĐ: R`

`@` Nếu `x > 2` thì: `f(x)=2x+1`

   H/s xác định trên `(2;+oo)`

`=>` H/s liên tục trên `(2;+oo)`

`@` Nếu `x < 2` thì: `f(x)=x^2-3x+4`

    H/s xác định trên `(-oo;2)`

`=>` H/s liên tục trên `(-oo;2)`

`@` Nếu `x=2` thì: `f(x)=5`

`lim_{x->2^[-]} (x^2-3x+4)=2`

`lim_{x->2^[+]} (2x+1)=5`

   Vì `lim_{x->2^[-]} f(x) ne lim_{x->2^[+]} f(x) =>\cancel{exists} lim_{x->2} f(x)`

  `=>` H/s gián đoạn tại `x=2`

KL: H/s liên tục trên `(-oo;2)` và `(2;+oo)` 

      H/s gián đoạn tại `x=2`