Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu p = 3 thì: 8p + 1 = 8.3 + 1 = 25, 25 chia hết cho 5 nên 8p + 1 không là số nguyên tố.
- Nếu p không chia hết cho 3 thì 8p cũng chia hết cho 3.
Ta có 8p -1; 8p ; 8p + 1 là số tự liên tiếp nên sẽ có một số chia hết cho 3. Do 8p không chia hết cho 3 nên 8p -1 hoặc 8p + 1 chia hết cho 3.
Cả 2 số này đều là số chẵn lớn hơn 2, vậy chúng không thể là số nguyên tố
Ta có:
\(2009^{100}+1-2009^{100}+1=2009^{100}-2009^{100}+1+1=2\)
=>\(2009^{100}+1\) và \(2009^{100}-1\) khác tính chẵn lẻ
=>\(2009^{100}+1\) hoặc \(2009^{100}-1\) là số chẵn
Mà 2 số trên đều lớn hơn 2
=>Một trong 2 số trên là hợp số(ĐPCM)
Ta thấy : 2n-1; 2n;2n+1 là 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3
Mà 2n không chia hết cho 3( vì 2 không chia hết cho 3)
=>hoặc 2n+1 hoặc 2n-1 chia hết cho 3
=>hoặc 2n+1 hoặc 2n-1 là hợp số
=>2n+1 và 2n-1 không thể đồng thời là 2 số nguyên tố
Để \(\frac{n+6}{3}\)và \(\frac{n+35}{3}\)đồng thời nguyên
Ta thấy \(\frac{n+6}{3}\)nguyên => \(n⋮3\)(do 6\(⋮\)3)
Mặt khác 35 không chia hết cho 3 nên n+35 không chia hết cho 3 vậy nên \(\frac{n+35}{3}\)không nguên
Vậy không tồn tại n thỏa mãn
ko dong thoi la so ngto
ko the