K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

29 tháng 4 2017

Chứng minh được  B M ⏜ = M C ⏜ => AM là phân giác trong

Mặt khác:  M A N ^ = 90 0

=> AN là phân giác ngoài

30 tháng 1 2019

Bài 1 

a/ Ta có : Góc AOK = góc xAC ( AC // OB )

            Góc xAC = góc AEC ( góc tạo bởi t.t và dây cung và góc nt chắn cung  AC )

            Góc AEC = góc OEK ( 2 góc đối đỉnh )

=> góc AOK = góc OEK

Xét tam giác KOE và tam giác KAO ta có:

       Góc OKE = góc OKA ( góc chung )

       Góc OEK = góc AOK ( cmt )

=> tam giác KOE đồng dạng tam giác  KAO (g-g)

=> \(\frac{KO}{KA}=\frac{KE}{KO}\)=>\(KO^2=KA.KE\)(1)

b/ Xét tam giác BEK và tam giác AKB ta có :

       Góc EKB = góc AKB ( góc chung )

       Góc EBK = góc BAK ( góc tạo bởi t.t và dây cung và góc nt chắn cung EB )

=> tam giác BEK đồng dạng tam giác ABK (g-g)

=> \(\frac{KE}{KB}=\frac{KB}{KA}\)=>\(KB^2=KE.KA\)(2)

(1) và (2) => \(KO^2=KB^2\)=>\(KO=KB\)=> K là trung điểm OB

30 tháng 1 2019

à minh ghi thiếu, bài 2 là người ta giao cho tổ A làm trong một thời gian nhất định

7 tháng 5 2019

a, Ta có  A C M ^ = 90 0  (góc nội tiếp)

b, Ta có ∆ABH:∆AMC(g.g)

=>  B A H ^ = O A C ^ ; O C A ^ = O A C ^

=>  B A H ^ = O C A ^

c,  A N M ^ = 90 0

=> MNBC là hình thang

=> BC//MN => sđ B N ⏜ = sđ C M ⏜

=>  C B N ^ = B C M ^  nên BCMN là hình thang cân

14 tháng 2 2020

khos thế

14 tháng 2 2020

Pt 1: 4(1/a  + 1/b )= 1

Pt 2: 1/a  +   3/b  = 5/12   

Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

hay \(\widehat{ACM}=90^0\)

b: \(\widehat{OAC}+\widehat{AMC}=90^0\)

\(\widehat{BAH}+\widehat{ABC}=90^0\)

mà \(\widehat{AMC}=\widehat{ABC}\)

nên \(\widehat{OAC}=\widehat{BAH}=\widehat{OCA}\)

26 tháng 1 2022

Xét \(\Delta OAC\) có : \(OA=OC\left(=R\right)\left(gt\right)\)

\(\Rightarrow\Delta OAC\) cân tại O

\(\Rightarrow\widehat{OAC}=\widehat{ACO\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\widehat{BAH=\widehat{OCA}}\)

c) Xét \(\left(O\right)\), có : \(\widehat{ANM=90^0}\)

\(\Rightarrow MN\pm AN\)

\(MàBC\pm AN\left(gt\right)\) 

\(\Rightarrow MN=BC\)

Xét tam giác \(BNMC\)\(cóMN=BC\left(cmt\right)\)

Tam giác BNMC là hình thang

Mà bốn đỉnh B,M,N,C

Vậy BMNC là tam giác cân

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

b: \(\widehat{BAH}+\widehat{ABC}=90^0\)

\(\widehat{OAC}+\widehat{AMC}=90^0\)

mà \(\widehat{ABC}=\widehat{AMC}\left(=\dfrac{sđ\stackrel\frown{AC}}{2}\right)\)

nên \(\widehat{BAH}=\widehat{OAC}=\widehat{OCA}\)

26 tháng 1 2022

Bạn chưa tính góc AMC kìa  :))))