Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
Thời gian đi của ô tô thứ nhất:
\(t_1=\dfrac{s}{2v_1}+\dfrac{s}{2v_2}=\dfrac{s\left(v_1+v_2\right)}{2v_1v_2}\)
Vận tốc trung bình của ô tô thứ nhất:
\(v_{tbA}=\dfrac{s}{t}=\dfrac{2v_1v_2}{v_1+v_2}=\dfrac{2.20.60}{20+60}=30km/h\)
Theo đề ta có: \(s=\dfrac{t_2}{2}v_1+\dfrac{t_2}{2}v_2=t_2\left(\dfrac{v_1+v_2}{2}\right)\)
Vận tốc trung bình của ô tô thứ hai:
\(v_{tbB}=\dfrac{s}{t_2}=\dfrac{v_1+v_2}{2}=\dfrac{20+60}{2}=40km/h\)
Theo đề bài ta có: \(\dfrac{s}{v_A}-\dfrac{s}{v_B}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{s}{30}-\dfrac{s}{40}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4s}{120}-\dfrac{3s}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow s=60\left(km\right)\)
Vậy hai xe xuất phát cùng lúc sẽ gặp nhau sau:
\(s_1+s_2=s_{AB}\)
\(\Leftrightarrow30t+40t=60\)
\(\Leftrightarrow70t=60\)
\(\Leftrightarrow t=\dfrac{60}{70}\approx0,9\left(h\right)\)
Hai xe gặp nhau tại điểm cách điểm A:
\(s_1=v_A.t=30.0,9=27\left(km\right)\)
Thời gian xe A chạy trên nữa quãng đường đầu:
\(t_1=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_1}=\dfrac{\dfrac{s_{AB}}{2}}{20}=\dfrac{s_{AB}}{2.20}=\dfrac{s_{AB}}{40}\left(h\right)\)
Thời gian xe A chạy trên nữa quãng đường sau:
\(t_2=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_2}=\dfrac{\dfrac{s_{AB}}{s}}{60}=\dfrac{s_{AB}}{2.60}=\dfrac{s_{AB}}{120}\left(h\right)\)
Vận tốc trung bình của xe A trên cả quãng đường AB:
\(\upsilon_{tbA}=\dfrac{\dfrac{s_{AB}}{2}+\dfrac{s_{AB}}{2}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{30}}=30\left(km/h\right)\)
Quãng đường mà xe B đi được trong nữa thời gian đầu:
\(s_1=\upsilon_1.\dfrac{t}{2}=20.\dfrac{t}{2}=10t\left(km\right)\)
Quãng đường xe B đi được trong nữa thời gian sau:
\(s_2=\upsilon_2.\dfrac{t}{2}=60.\dfrac{t}{2}=30t\left(km\right)\)
Vận tốc trung bình của xe B trên cả quãng đường AB:
\(\upsilon_{tbB}=\dfrac{s_1+s_2}{\dfrac{t}{2}+\dfrac{t}{2}}=\dfrac{10t+30t}{t}=\dfrac{40t}{t}=40\left(km/h\right)\)
Thời gian bạn An chạy hết quãng đường đầu là:
t1 = \(\dfrac{S_1}{v_1}\) = \(\dfrac{\dfrac{S}{2}}{v_1}\) = \(\dfrac{S}{2v_1}\) (h)
Thời gian bạn An chạy hết quãng đường cuối là:
t2 = \(\dfrac{S_2}{v_2}\) = \(\dfrac{\dfrac{S}{2}}{v_2}\) = \(\dfrac{S}{2v_2}\) (h)
\(\rightarrow\) Vận tốc trung bình của bạn An trên cả quãng đường AB là:
vtb1 = \(\dfrac{S}{t_1+t_2}\) = \(\dfrac{S}{\dfrac{S}{2v_1}+\dfrac{S}{2v_2}}\) = \(\dfrac{2v_1v_2}{v_1+v_2}\) (km/h)
Quãng đường bạn Bình chạy được trong
+ Nửa thời gian đầu: S1 = \(\dfrac{t}{2}\).v1 ( km)
+ Nửa thời gian sau: S2 = \(\dfrac{t}{2}\).v2 ( km)
\(\rightarrow\) Vận tốc trung bình của bạn Bình trên cả đoạn đường AB là:
vtb2 = \(\dfrac{S_1+S_2}{2t}\) = \(\dfrac{v_1+v_2}{2}\) ( km/h)
Xét hiệu vtb1 -vtb2 = \(\dfrac{-\left(v_1-v_2\right)^2}{2.\left(v_1+v_2\right)}\) > 0
\(\rightarrow\)vtb2 > vtb1
\(\rightarrow\) Bạn Bình chạy về đích trước
a) Vận tốc tb của bạn Hòa:
\(v_{tb1}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{s}{\dfrac{s}{2}\left(\dfrac{1}{v_1}+\dfrac{1}{v_2}\right)}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{2v_2}}=\dfrac{2v_1v_2}{v_1+v_2}\)
Vận tốc tb của bạn Bình:
\(v_{tb2}=\dfrac{s1+s2}{t1+t2}=\dfrac{\dfrac{t}{2}\left(v1+v2\right)}{t}=\dfrac{v1+v2}{2}\)