K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

b, D = 2x^2-4x+3

D= 2(x^2-2x+1) +1

D= 2(x-1)^2+1 luôn lớn hơn hoặc bằng 1

V ậy giá trị nhỏ nhất của D =1 khi x=1

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

26 tháng 7 2017

1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)

Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)

thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

Vậy a=1;b=-6 thì ....

2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(\Rightarrow M\ge-36\)

Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

7 tháng 12 2019

1) Có A = x3 + 4x2 + ax + b

             = x3 + x2 - 2x + 3x+ 3x - 6 - x + ax + b + 6

             = x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)

             = (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)

Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2

thì (a - 1)x + (b + 6) = 0 với mọi x

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)

              = [(x - 1)(x + 6)] [(x + 2)(x + 3)]

              = (x2 + 5x - 6)(x2 + 5x + 6)

              = (x2 + 5x)2 - 36

Thấy (x2 + 5x)2 ≥ 0 với mọi x

=> (x2 + 5x)2 - 36 ≥ -36 với mọi x

=> M ≥ -36 với mọi x

Dấu "=" xảy ra khi x2 + 5x = 0 

                    <=> x(x + 5) = 0

                    <=> x = 0 hoặc x + 5 = 0

                    <=> x = 0 hoặc x = -5

Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5

P/s: ko chắc

13 tháng 2 2018

bài 1

x -2x+1 x+2 x +2x +x 2x -4x +a x -3x +a 2x -4x +3 a-3 3 2 2 2 2

để x3-3x+a chia hết cho x2-2x+1

thì a-3 =0

=> a=3

14 tháng 2 2018

Bài 2:

\(B=x^2-5x+2\)

\(\Leftrightarrow x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{17}{4}=0\)

\(=\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\)

Ta có: \(\left(x-\dfrac{5}{2}\right)^2\ge0\) với mọi x

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge\dfrac{-17}{4}\)

Vậy GTNN của B là \(\dfrac{-17}{4}\)

22 tháng 12 2017

a) B(-1) = 2.(- 1)2 - (- 1) + 1 = 4

b) Thực hiện phép chia ta có:

\(2x^3+5x^2-2x+a=\left(x+3\right)+\frac{a-3}{2x^2-x+1}\)

Vậy nên để đa thức A chia hết cho đa thức B thì a - 3 = 0 hay a = 3.

c) Để B = 1 thì \(2x^2-x+1=1\Leftrightarrow2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)

28 tháng 11 2016

AD phương pháp hệ số bất đinh hoặc xét giá trị riêng

28 tháng 11 2016

không bít

15 tháng 12 2017

mk thấy bài 1 phải là ko phụ thuộc vào biến x chứ

15 tháng 12 2017

bài 2 

a= -30