K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Pt \(\left(m+2\right)x^2+4mx+4m-1=0\)có hai nghiệm phân biệt khi và chỉ khi:

\(\hept{\begin{cases}m+2\ne0\\\left(2m\right)^2-\left(m+2\right)\left(4m-1\right)>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\4m^2-\left(4m^2+7m-2\right)>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\-7m+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m\ne-2\\m< \frac{2}{7}\end{cases}}\)

Vậy \(\hept{\begin{cases}m\ne2\\m< \frac{2}{7}\end{cases}}\)Pt có hai nghiệm phân biệt.

21 tháng 3 2018

a. x2 – 2(m+3)x + m2+3=0 (1)

Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

b. (m+1)x2+4mx+4m -1 =0 (2)

Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m ≠ -1

và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt

4 tháng 5 2023

\(m=0\) là okee rồi nè

còn \(x_1=x_2\) thì như sau :

\(\Leftrightarrow x_1-x_2=0\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.

4 tháng 5 2023

chắc chắn không bạn

22 tháng 11 2015

 

\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)

<=> (m.x3 - m) + (x- x) + (3mx- 3m) - (x- 1) = 0 

<=> m(x - 1)(x+ x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0 

<=> (x - 1).[m(x+ x+ 1) + x(x+1) + 3m(x+ 1) -  (x+1)] = 0 

<=> (x - 1).(mx2 + mx + m + x+ x + 3mx + 3m - x -  1) = 0 

<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0  (*)

b)  (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0  (1)

Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt 

<=> m+ 1 \(\ne\) 0 và  \(\Delta\)' > 0 và x1.x> 0 và x+ x< 0 trong đó x1; xlà hai nghiệm của (1)

+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1

+)  \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2  - 4m- 3m +  1 = -3m + 1 > 0 => m < 1/3

+) Theo hệ thức Vi ét ta có: x1 + x\(-\frac{4m}{m+1}\); x1.x\(\frac{4m-1}{m+1}\)

=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0 

=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m  và m + 1 cùng dấu

=> m > 0  hoặc m < -1

Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0  < m < 1/3

Vậy...

22 tháng 11 2015

đơn giản .tìm NCPT hoac TLCT gi do la co

10 tháng 5 2018

mấy câu kia dễ rồi. ưu tiên làm câu khó 

B2 b)  x^2 +4mx +4m -1 =0

có  đen ta phẩy = ( 2 m ) ^2 -4m +1 =4m^2 -4m +1 = ( 2m -1 ) ^2 > 0 với mọi x khác 1/2

25 tháng 6 2019

(m+1) x 2 +4mx+4m -1 =0     (2)

Ta có:  ∆ ' = 2 m 2  – (m +1)(4m -1) = 4 m 2  – 4 m 2  + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m  ≠  -1

và * ∆ ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m  ≠  -1 thì phương trình đã cho có 2 nghiệm phân biệt

NV
19 tháng 2 2022

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

21 tháng 2 2023

2x^2  -(4m+3)x+2m^2-1=0

 

 a= 2

b = -(4m+3)

 c= 2m^2-1

Ta có: ∆=b^2-4ac

              = 〖(4m+3)〗^2-4.2.(2m^2-1)

              = 16m^2+24m+9-16m^2+8   

               = 24m +17

Để phương trình có 2 nghiệm phân biệt

=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24

Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24

https://www.youtube.com/watch?v=toNMfaR7_Ns

 

 

AH
Akai Haruma
Giáo viên
11 tháng 6 2021

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

12 tháng 6 2015

a, \(\Delta=16m^2-4.\left(m-1\right)\left(4m+1\right)=16m^2-16m^2+12m+4=12m+4\)

pt có 2 nghiệm pb <=> \(\Delta>0\Leftrightarrow12m+4>0\Leftrightarrow m>-\frac{1}{3}\)

b ,pt có 2 nghiệm trái dấu <=>  \(\Delta>0;P-\frac{1}{3};4m+1-\frac{1}{3};m