K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC và AD=BC(1)

Xét tứ giác AEBC có 

N là trung điểm của AB

N là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE//BC và AE=BC(2)

Từ (1) và (2) suy ra AD=AE

b: Ta có: AD//BC

AE//BC

mà AD cắt AE tại A

nên A,D,E thẳng hàng

28 tháng 11 2017

oe

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$

Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:

\(\Rightarrow AD=BC(1)\)

Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành

\(\Rightarrow AE=BC(2)\)

a) Từ (1),(2) suy ra \(AD=AE\)

b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng

Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$

Do đó ta có đpcm.

27 tháng 11 2017

thua co em chua hoc hinh binh hanh cô có thể giải theo Trường hợp bằng nhau thứ hai của tam giác cạnh - góc dc ko ak

a: XétΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔAHM vuông tại H và ΔCKM vuông tại K có

MA=MC

\(\widehat{AMH}=\widehat{CMK}\)

DO đó: ΔAHM=ΔCKM

Suy ra: MH=MK

Xét tứ giác AHCK có

Mlà trung điểm của AC

M là trung điểm của HK

Do đó: AHCK là hình bình hành

Suy ra: AK=CH

8 tháng 1 2017

hình bạn tự vẽ nhé

xét tam giác ADM và tam giác ADE có 

     AD = AE (GT)

     AM là cạnh chung

     DM = ME (gt)

Do đó tam giác ADM bằng tam giác ADE (c.c.c)

    suy ra \(\widehat{BAM}=\widehat{CAM}\)2 GÓC TƯƠNG ỨNG 

mà AN nằm giữa AB và AC

    suy ra TIA AN LÀ TIA PHÂN GIÁC GÓC BAC

  TƯƠNG TỰ TA CÓ TAM GIÁC ABN VÀ TAM GIÁC ACN BẰNG NHAU (C.C.C)

   suy ra \(\widehat{BAN}=\widehat{CAN}\)2 GÓC TƯƠNG ỨNG

MÀ TIA AN NẰM GIỮA TIA AB VÀ TIA AC

 SUY RA AN LÀ PHÂN GIÁC GÓC BAC (2)

  từ (1) và (2) suy ra A,M,N thẳng hàng

8 tháng 1 2017

Hình tự vẽ nha thanh niên :)

* Xét tam giác ADM và tam giác AEM có

AM là cạnh chung

AD=AE( theo GT )

DM=EM( M là trung điểm của DE)

=> Tam giác ADM = Tam giác AEM (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\)(2 góc tương ứng)

=>AM là tia phân giác của \(\widehat{DAE}\)(1)

* Xét tam giác ABN và tam giác ACN có

AN là cạnh chung

AB=AC ( theo GT )

BN=CN ( N là trung điểm của BC )

=> Tam giác ABN = tam giác ACN (c.c.c)

=> \(\widehat{BAN}\)=\(\widehat{CAN}\)( 2 góc tương ứng )

=>AN là tia phân giác của \(\widehat{BAC}\)(2)

Từ (1) và (2) => A;M;N thằng hàng ( A;M;N thuộc tia phân giác của góc BAC)