Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))
b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).
Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))
c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);
C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).
Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
1.
Ta có: \(P=\frac{x+16}{\sqrt{x}+3}=\frac{\sqrt{x}(\sqrt{x}+3)-3(\sqrt{x}+3)+25}{\sqrt{x}+3}\)
\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=(\sqrt{x}+3)+\frac{25}{\sqrt{x}+3}-6\)
\(\geq 2\sqrt{(\sqrt{x}+3).\frac{25}{\sqrt{x}+3}}-6\) (áp dụng BĐT AM-GM)
\(P\geq 2\sqrt{25}-6=4\)
Vậy $P_{\min}=4$. Giá trị này đạt tại $\sqrt{x}+3=5\Leftrightarrow x=4$
2.
\(P=\frac{\sqrt{x}}{(\sqrt{x}+2)^2}=\frac{\sqrt{x}}{x+4+4\sqrt{x}}\)
Áp dụng BĐT AM-GM:
$x+4\geq 4\sqrt{x}\Rightarrow x+4+4\sqrt{x}\geq 8\sqrt{x}$
$\Rightarrow P\leq \frac{\sqrt{x}}{8\sqrt{x}}=\frac{1}{8}$
Vậy $P_{\max}=\frac{1}{8}$. Giá trị này đạt tại $x=4$
điều kiện xác định : \(x>0;x\ne4\)
a) ta có : \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\right)\) \(\Leftrightarrow P=\left(\dfrac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\left(\sqrt{x}-2\right)^2-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{4}\right)\) \(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}\)b) để \(P>0\) \(\Leftrightarrow\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}>0\) \(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-3< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>9\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 9\\x< 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 1\end{matrix}\right.\)
kết hợp với điều kiện xác định ta có : \(0< x< 1\) hoặc \(x>9\)
c) ta có : \(\sqrt{P}=\sqrt{\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}}\ge0\forall x\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
vậy ....................................................................................................
d) ta có : \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)
\(\Leftrightarrow m\left(\sqrt{x}-3\right)\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{4}=12m\sqrt{x}-4\)
\(\Leftrightarrow m\left(x-6\sqrt{x}+9\right)\left(\sqrt{x}-1\right)=48m\sqrt{x}-4\)
nhân tung ra giải bình thường ............(mk nghỉ có vấn đề ở câu d này nha )
Lời giải:
$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$
Vậy $M=\frac{1}{4}$
------------------
$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$
Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $N=\frac{5}{2}$
$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$
Đáp án C.