Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có lim x → 0 f x = lim x → 0 e a x - 1 x = lim x → 0 e a x - 1 a x a = a vì lim x → 0 e a x - 1 a x = 1
Vậy để hàm số f(x) liên tục tại x 0 = x ⇔ lim x → 0 f x = f 0 ⇔ a = 1 2 .
Đáp án B
Đặt t = a − x ⇒ d t = − d x
và x = 0 x = a → t = a t = 0
I = ∫ 0 a d x 1 + f x = ∫ 0 a d x 1 + f a − t = ∫ 0 a d x 1 + 1 f x = ∫ 0 a f x d x 1 + f x
⇒ 2 I = ∫ 0 a d x 1 + f x + ∫ 0 a f x d x 1 + f x = ∫ 0 a d x = x a 0 = a ⇒ I = a 2 = b a 2 ⇒ b = 1 c = 2 ⇒ b + c = 3
Đáp án C
= 1 2