Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
b)
+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1
+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn
Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)
=> m khác 0 phương trình (1) có hai ngiệm phân biệt
Vậy pt (1) luôn có nghiệm với mọi giá trị của m
c) Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại
Với m khác 0
Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)
Khi đó áp dụng định lí Vi-et:
\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)
1.a
ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)
= m^2-m^2+1=1>0
vậy pt luôn có 2 no vs mọi m
a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)
Vậy pt luôn có 2 nghiệm với mọi m
b)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)
vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)
c)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)
\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)
tính denlta là xong mà bạn
Tình yêu sao khác thường
Đôi lúc ta thật kiên cường
Nhiều người trách mình điên cuồng
Cứ lao theo dù không lối ra