K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

Bài 1: 

b: Xét ΔOAC và ΔOBD có

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

OC=OD

Do đó: ΔOAC=ΔOBD

11 tháng 12 2021

Nếu cậu làm hết thì tớ sẽ thả đúng và một lượt theo dõi:3(không làm cũng không sao tớ cảm ơn)

14 tháng 11 2021

a) \(k=-5\)

b) \(-5x=y\)

c)  x             -4                 -1                2                   3

     y             20                 5               -10               -15

Tìm x xong rồi tìm y

3 thì làm kiểu gì cũng được

17 tháng 11 2022

A= 3/4 +2/5-7/5+5/4

  = (3/4 + 5/4) + (2/5-7/5)

  = 2 + (-1)

  = 1

 

Ta có :

\(x^2=\frac{24}{25}\)

\(\Rightarrow x=\pm\sqrt{\frac{24}{25}}\)

\(\Rightarrow x\in\left\{\sqrt{\frac{-24}{25}};\sqrt{\frac{24}{25}}\right\}\)

14 tháng 9 2021

Cậu ơi tớ chưa học tới Căn bậc ạ.

13 tháng 12 2021

mọi người chỉ cần làm ý b, c, d thui ạ,... mình cảm ơn :(

13 tháng 12 2021

Tham khảo:
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên ˆMCI=ˆNCIMCI^=NCI^(hai góc tương ứng)

hay ˆBCA=ˆKCABCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

ˆBCA=ˆKCABCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)