K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2023

\(S=1!+2!+3!+...+2023!\)

Ta thấy :

\(1!+2!+3!+4!=1+2+6+24=33\) không chia hết cho \(5\)

\(5!+6!+7!+8!+9!=\overline{.....5}⋮5\)

\(10!+11!+12!+...+2023!=\overline{.....0}⋮5\)

Vậy \(S=1!+2!+3!+...+2023!\) không chia hết cho \(5\)

 

19 tháng 9 2023

Đa tạ suphu =))))

21 tháng 9 2023

S = 1! + 2! + 3! +...+ 2023!

S = (1! + 2! + 3! + 4!) + (5! + 6! +...+2023!)

S = (1 + 2 + 6 + 24) + (5! + 6!+...+2023!)

S = 33 + (5! +6!+...+ 2023!)

Vì 5!; 6!; 7!;...2023! đều chứa thừa số 5 nên 

B = 5! + 6! + 7!+...+ 2023! ⋮ 5

33 không chia hết cho 5

S không chia hết cho 5

 

 

12 tháng 10 2023

với n=1*2*3*....*n =>n=0 hay muốn tính tổng S ta có công thức

số các số hạng của S là

(2023-1):1=2022

tổng số các số hạng

(2023+1)*2022:1=4.092.528

 

5 tháng 10 2023

không nhé, vì từ 5! trở đi sẽ chia hết cho 5 (vì 1x2x3x4x5x.... (chia hết cho 5))
Đặt phần từ 5! -> 2023! = b (b chia hết cho 5)
ta còn: 1!+2!+3!+4!+b
=1+1x2+1x2x3 + 1x2x3x4 + b
=1+2+6+24+b
=33+b
mà 33 không chia hết cho 5 trong khi b chia hết cho 5
=> S không chia hết cho 5

19 tháng 9 2023

a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)

- Với \(n=1:\)

\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)

- Với \(n=k:\) 

\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)

- Với \(n=k+1:\) 

\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))

Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)

19 tháng 9 2023

Lớp 6 không chứng minh quy nạp!