K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

theo đề bài ta có \(n\ge4\)

\(C^2_2.C_{n-2}^2=2.C_{n-2}^4\Leftrightarrow\dfrac{\left(n-2\right)!}{2!\left(n-4\right)!}=\dfrac{2.\left(n-2\right)!}{4!.\left(n-6\right)!}\)

\(\Leftrightarrow6\left(n-2\right)\left(n-3\right)=\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)\)

\(\Leftrightarrow6=n^2-9n+20\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\left(\text{loại}\right)\\n=7\end{matrix}\right.\)

31 tháng 10 2017

Vậy còn câuChương 2: TỔ HỢP. XÁC SUẤT này b có thể giúp mk đc ko

23 tháng 7 2021

2.B

3.C

4.A

18 tháng 3 2022

undefined

18 tháng 3 2022

undefined

NV
13 tháng 8 2021

30.

Đường tròn tâm \(I\left(8;3\right)\) bán kính \(R=\sqrt{7}\)

ẢNh của đường tròn qua phép tịnh tiến là đường tròn có tâm \(\left\{{}\begin{matrix}x'=8+5=13\\y'=3+7=10\end{matrix}\right.\) và bán kính R

Phương trình: 

\(\left(x-13\right)^2+\left(y-10\right)^2=7\)

8.

Do \(\overrightarrow{DA}=\overrightarrow{CB}\) nên phép tịnh tiến vecto \(\overrightarrow{DA}\) biến C thành B

9.

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AC}\) nên phép tịnh tiến \(T_{\overrightarrow{AB}+\overrightarrow{AD}}\) biến A thành C

NV
13 tháng 8 2021

10.

Phép tịnh tiến \(\overrightarrow{AB}\) biến d thành tiếp tuyến tại B

11.

\(\overrightarrow{BC}=\left(-6;-3\right)\)

Gọi G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

\(\Rightarrow G\left(2;1\right)\)

G' là ảnh của G qua phép tịnh tiến \(\overrightarrow{BC}\)

\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=-6+2=-4\\y_{G'}=-3+1=-2\end{matrix}\right.\)

\(\Rightarrow G'\left(-4;-2\right)\)

9 tháng 4 2022

tất  cả ???

9 tháng 4 2022

Vâng giúp mk với ạ

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

1.

Ta thấy: $-1\leq \cos x\leq 1$

$\Leftrightarrow 1\leq 2\cos x+3\leq 5$

$\Leftrightarrow 1\leq \sqrt{2\cos x+3}\leq \sqrt{5}$
$\Leftrightarrow -3\leq \sqrt{2\cos x+3}-4\leq \sqrt{5}-4$
Vậy $y_{\min}=-3$ khi $x=(2k+1)\pi$, $y_{\max}=\sqrt{5}-4$ khi $x=2k\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
27 tháng 7 2021

2.

\(y=\cos ^2x-6\sin x+3=1-\sin ^2x-6\sin x+3\)

\(=-\sin ^2x-6\sin x+4\)

Ta thấy: $\sin ^2x\leq 1\Rightarrow -\sin ^2x\geq -1$

$\sin x\leq 1\Leftrightarrow -6\sin x\geq -6$

$\Rightarrow y=-\sin ^2x-6\sin x+4\geq -1-6+4=-3$

Vậy $y_{\min}=-3$. Giá trị này đạt tại $x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.

Mặt khác:

\(y=-\sin ^2x-6\sin x+4=9-(\sin x+1)(\sin x+5)\)

$-1\leq \sin x\leq 1\Rightarrow (\sin x+1)(\sin x+5)\geq 0$

$\Rightarrow y=9-(\sin x+1)(\sin x+5)\leq 9$

Vậy $y_{\max}=9$. Giá trị này đạt tại $x=2k\pi -\frac{\pi}{2}$ với $k$ nguyên.

17 tháng 9 2021

1.1.

\(sinx=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\dfrac{1}{4}+k2\pi\\x=\pi-arcsin\dfrac{1}{4}+k2\pi\end{matrix}\right.\)

17 tháng 9 2021

1.2.

\(sinx=-\dfrac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

NV
10 tháng 9 2021

Quy tắc b và c là phép biến hình (quy tắc b là phép đối xứng trục, quy tắc c là phép đối xứng tâm)

1C

2C

3A

4A

5A

6D

7D

8D