K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

29 tháng 5 2022

\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)

25 tháng 10 2021

Ta có \(a\sqrt{1-b^2}+b\sqrt{1-a^2}=1\)

\(\Rightarrow a^2\left(1-b^2\right)+b^2\left(1-a^2\right)+2ab\sqrt{\left(1-a^2\right)\left(1-b^2\right)}=1\)

\(\Rightarrow\left(1-a^2\right)\left(1-b^2\right)-2ab\sqrt{\left(1-a^2\right)\left(1-b^2\right)}+\left(ab\right)^2=0\)

\(\Rightarrow\left(\sqrt{\left(1-a^2\right)\left(1-b^2\right)}-ab\right)^2=0\)

\(\Rightarrow\sqrt{\left(1-a^2\right)\left(1-b^2\right)}=ab\Rightarrow\left(1-a^2\right)\left(1-b^2\right)=a^2b^2\)

\(\Rightarrow a^2+b^2=1\).

Sửa đề: 1+a^2;1+b^2;1+c^2

\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)

\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)

=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)

NV
2 tháng 8 2021

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)

2 tháng 8 2021

\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)

\(VT\ge VP\)(giả thiết)

\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)

\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)

\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))

\(\)

17 tháng 7 2021

áp dụng BĐT Bunhiacopxky

\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)

\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)

6 tháng 11 2022

6 tháng 11 2022

9 tháng 1 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng phân thức, ta được: \(VT=\frac{a^4}{a^2+a^2b-a^3}+\frac{b^4}{b^2+b^2c-b^3}+\frac{c^4}{c^2+c^2a-c^3}\)\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)        \(=\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\)

Ta cần chứng minh \(\frac{1}{1+\left(a^2b+b^2c+c^2a\right)-\left(a^3+b^3+c^3\right)}\ge1\)hay \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Đây là bất đẳng thức quen thuộc có nhiều cách chứng minh:

** Cách 1: Áp dụng AM - GM, ta được: \(a^3+a^3+b^3\ge3a^2b\)\(b^3+b^3+c^3\ge3b^2c\)\(c^3+c^3+a^3\ge3c^2a\)

Cộng từng vế ba bất đẳng thức trên

** Cách 2: Giả sử \(a\le b\le c\)

Có: \(a^3+b^3+c^3=a^2b+b^2c+c^2a+\left(c^2-a^2\right)\left(b-a\right)+\left(c^2-b^2\right)\left(c-b\right)\ge a^2b+b^2c+c^2a\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\).

9 tháng 1 2021

Or the following SOS: 

* Hoặc mạnh hơn với a,b,c thực thỏa mãn \(a+b\ge0,b+c\ge0,c+a\ge0\)

\(a^3+b^3+c^3-a^2b-b^2c-c^2a\)

                                            \(=\frac{\left(a^2+b^2-2c^2\right)^2+3\left(a^2-b^2\right)^2+\Sigma_{cyc}4\left(a+b\right)\left(c+a\right)\left(a-b\right)^2}{8\left(a+b+c\right)}\ge0\)