Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)
\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)
\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)
\(B=x^3-y^3+\left(x+y\right)^2\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2+4xy\)
\(=4^3+3\cdot4\cdot5+4^2+4\cdot5\)
\(=160\)
\(\left(x+y\right)^2=\left(x-y\right)^2+4xy=4^2+4.5=36\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=4^3+3.5.4=124\)
\(\Rightarrow B=124+36=160\)
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.5.4=65\)
\(x\cdot y=3\Rightarrow x=\dfrac{3}{y}\\ \Rightarrow\dfrac{3}{y}+y=5\\ \Rightarrow y^2-5y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=\dfrac{5+\sqrt{21}}{2}\Rightarrow x=\dfrac{15-3\sqrt{21}}{2}\\y=\dfrac{5-\sqrt{21}}{2}\Rightarrow x=\dfrac{15+3\sqrt{21}}{2}\end{matrix}\right.\)
\(B=\left(2x-3y\right)\left(3y-2x\right)=-\left(2x-3y\right)^2\\ \Rightarrow\left[{}\begin{matrix}B\simeq-172,176\\B\simeq-790,823\end{matrix}\right.\)
\(C=x^5+y^5\\ \Rightarrow\left[{}\begin{matrix}C\simeq2525,096\\C\simeq613574,904\end{matrix}\right.\)
Em xem lại đề xem, bài này số xấu
\(x+y=4=>\left(x+y\right)^2=16\)
\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=4\left(x^2+2xy+y^2-3xy\right)=4\left[\left(x+y\right)^2-3.3\right]=4\left(16-9\right)=28\)
Lời giải:
Theo hằng đẳng thức đáng nhớ:
$x^3+y^3=(x+y)^3-3xy(x+y)=4^3-3.3.4=28$
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
P/s dễ tự làm mình chỉ làm mấy bước cơ bản thôi :)
Ta có: x + y = 6,012
\(\Rightarrow\left(x+y\right)^2=6,012^2=36,144144\)
\(\Rightarrow x^2+2xy+y^2=36,144144\)
\(\Rightarrow2xy+33,76244=36,144144\)
\(\Rightarrow2xy=2,381704\)
Tới đây tự tìm tiếp x với y
Mà: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Rồi dễ rồi đấy làm tiếp đi
\(x+y=10\Rightarrow\left(x+y\right)^3=1000\Leftrightarrow x^3+3xy\left(x+y\right)+y^3=1000\)
Hay \(x^3+y^3+3.5.10=1000\Leftrightarrow x^3+y^3=1000-150=850\)
??