Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mệt
refer
https://www.google.com/search?q=2(x%2B3)%3D4x-(2%2Bx)&sourceid=chrome&ie=UTF-8
Gọi \(A\left(x;y\right)\). Do \(A,B\in\left(E\right)\) có hoành độ dương và tam giác \(OAB\) cân tại \(O\), nên:
\(B\left(x;y\right),x>0.=>AB=2\left|y\right|=\sqrt{4-x^2}\)
Gọi \(H\) là trung điểm \(AB,\) ta có: \(OH\pm AB\) và \(OH=x\).
Diện tích: \(S_{OAB}=\frac{1}{2}x\sqrt{4-x^2}\)
\(=\frac{1}{2}\sqrt{x^2\left(4-x^2\right)\le1}\)
Dấu " = " xảy ra, khi và chỉ khi \(x=\sqrt{2}\)
Vậy: \(A\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) hoặc \(A\left(\sqrt{2};-\frac{\sqrt{2}}{2}\right)\) và \(B\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)\).
Phương trình chính tắc của \(\left(E\right)\) có dạng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), với \(a>b>0\) và \(2a=8=>a=4\).
Do \(\left(E\right)\) và \(\left(C\right)\) cùng nhận \(Ox\) và \(Oy\) làm trục đối xứng và các giao điểm là các đỉnh của một hình vuông nên \(\left(E\right)\) và \(\left(C\right)\) có một giao điểm với tọa độ dạng \(A\left(t;t\right),t>0\)
\(A\in\left(C\right)\Leftrightarrow t^2+t^2=8=>t=2\)
\(A\left(2;2\right)\in\left(E\right)\Leftrightarrow\frac{4}{16}+\frac{4}{b^2}=1\Leftrightarrow b^2=\frac{16}{3}\)
Phương trình chính tắc của \(\left(E\right)\) là \(\frac{x^2}{16}+\frac{y^2}{\frac{16}{3}}=1\)
a. xét tam giác ABC và tam giác BHC có:
góc B = góc C = 90o
góc C chung
=> tam giác ABC ~ tam giác BHC (g.g)
Áp dụng định lí Pytago vào tam giác ABC, ta có:
AB2+BC2=AC2
36 + 64= AC2
AC2= 100
AC= 10 (cm)
vì tam giác ABC ~ tam giác BHC
=> \(\dfrac{AB}{BH}\)= \(\dfrac{AC}{BC}\)
=> BH = \(\dfrac{AB.BC}{AC}\)
=> BH= \(\dfrac{6.8}{10}\)= 4,8 (cm)
gọi số học sinh mua vở dự kiến là x
số học sinh mua vở trong quá trình thực hiện là x - 15
Theo đề ta có:
5x + 691= 6(x-15)
5x + 691= 6x - 90
5x - 6x = -90 - 691
-x= -781
x= 781
vậy trường có 781 học sinh.
a.\(ĐK:x\ne\pm1;x\ne-\dfrac{1}{2}\)
\(P=\left(\dfrac{x}{x+1}-\dfrac{x+1}{x-1}+\dfrac{7x-3}{x^2-1}\right):\dfrac{4}{2x+1}\)
\(P=\left(\dfrac{x\left(x-1\right)-\left(x+1\right)\left(x+1\right)+7x-3}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{4}{2x+1}\)
\(P=\dfrac{x^2-x-x^2-2x-1+7x-3}{\left(x-1\right)\left(x+1\right)}.\dfrac{2x+1}{4}\)
\(P=\dfrac{\left(4x-4\right)\left(2x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{4\left(x-1\right)\left(2x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{2x+1}{x+1}\)
b.\(2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\) ( vì \(x\ne-\dfrac{1}{2}\) )
\(x=0\Leftrightarrow P=\dfrac{2.0+1}{0+1}=\dfrac{1}{1}=1\)
45000 cm2 nha bạn
xin lỗi , mk nhầm , 150 cm2 nha bạn