K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)

\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác: 

+a+c > b => a+c-b > 0

+b+c > a=>b+c-a > 0

+a+b+c và b+c+a hiển hiên đều lớn hơn 0

Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)

\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)

7 tháng 4 2018

Ta có : 

\(\left(a-b\right)^2\ge0\) ( với mọi độ dài a, b ) 

\(\left(b-c\right)^2\ge0\) ( với mọi độ dài b, c ) 

Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\end{cases}}\) ( chuyển vế ) 

Do đó : 

\(a=b=c\)

Suy ra : tam giác ABC là tam giác đều 

Vậy tam giác ABC là tam giác đều 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Ta có \(\left(a-b\right)^2\ge0\)với mọi độ dài của a, b

và \(\left(b-c\right)^2\ge0\)với mọi độ dài của b, c

Mà \(\left(a-b\right)^2+\left(b-c\right)^2=0\)(gt)

=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\end{cases}}\)=> \(\hept{\begin{cases}a-b=0\\b-c=0\end{cases}}\)=> \(\hept{\begin{cases}a=b\\b=c\end{cases}}\)=> a = b = c

=> \(\Delta ABC\)đều (đpcm)

14 tháng 1 2019

Ai nhanh mình chọn!( Bài này chỉ để thử sức các bn, chứ mik biết lm rồi)

15 tháng 1 2019

Áp dụng bất đăng thức tam giác vào tam giác đã cho ta được:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\)

Ta có:

\(a^2+b^2+c^2=aa+bb+cc\)\(< a\left(c+b\right)+b\left(a+c\right)+c\left(a+b\right)\)

                                                                    \(=ac+ab+ab+bc+ac+bc\)

                                                                      \(=2ab+2ac+2bc\)

                                                                    \(=2\left(ab+ac+bc\right)\)                                                   (đpcm)

12 tháng 6 2015

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

12 tháng 6 2015

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?