Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1
Ta có: \(3\left|x^2-1\right|-6=\left|1-x^2\right|\)
\(\Leftrightarrow3\left|x^2-1\right|-\left|x^2-1\right|=6\)
\(\Leftrightarrow2\left|x^2-1\right|=6\)
\(\Leftrightarrow\left|x^2-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=3\\x^2-1=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-2\end{cases}}\)
Vì \(x\ge0>-2\left(\forall x\right)\)
\(\Rightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{204}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{203}{204}\)
\(=\frac{1}{204}\)
\(\text{Sửa đề }\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{203}\right)\times\left(1-\frac{1}{204}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{202}{203}\times\frac{203}{204}\)
\(=\frac{1\times2\times3\times...\times202\times203}{2\times3\times4\times...\times203\times204}\)
\(=\frac{1}{204}\)
Xác suất thực nghiệm xuất hiện mặt N là : \(\frac{17}{40}=42,5\%\)
đề bài là gì vậy bn