K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{204}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{203}{204}\)

\(=\frac{1}{204}\)

16 tháng 8 2019

\(\text{Sửa đề }\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{203}\right)\times\left(1-\frac{1}{204}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{202}{203}\times\frac{203}{204}\)

\(=\frac{1\times2\times3\times...\times202\times203}{2\times3\times4\times...\times203\times204}\)

\(=\frac{1}{204}\)

5 tháng 3 2016

2281,825 đó nha!!

11 tháng 1 2018

cái này mình chịu thua

hình như gtnn nó ko có vì tùy theo x và ko có số lớn nhất nhỏ nhất

1) Để A có giá trị nhỏ nhất thì 2x^2 phải có giá trị dương nhỏ nhất. Nhận thấy rằng 2x^2 >= 0 với mọi x.

Dấu = xảy ra khi 2x^2 = 0, khi đó x = 0.

Vậy để A đạt GTNN thì x = 0, khi đó A = 2 * 0^2 + 1 = 0 + 1 = 1.

2) Để B có giá trị nhỏ nhất thì 2(x - 1)^2 phải có giá trị dương lớn nhất. Nhận thấy rằng 2(x - 1)^2 >= 0 với mọi x.

Dấu = xảy ra khi 2(x - 1)^2 = 0, khi đó x = 1.

Vậy để B đạt GTNN thì x = 1, khi đó B = 2(1 - 1)^2 + 4 = 0 + 4 = 4.

15 tháng 8 2019

Ta có :  10 phút = 1/6 giờ

             30 phút = 1/2 giờ

             45 phút = 3/4 giờ

             20 phút = 1/3 giờ

             40 phút = 2/3 giờ

15 tháng 8 2019

10 phút = \(\frac{10}{60}=\frac{1}{6}\)giờ

30 phút = \(\frac{30}{60}=\frac{1}{2}\)giờ

12 phút = \(\frac{12}{60}=\frac{1}{5}\)giờ

45 phút = \(\frac{45}{60}=\frac{3}{4}\)giờ

20 phút = \(\frac{20}{60}=\frac{1}{3}\)giờ

40 phút = \(\frac{40}{60}=\frac{2}{3}\)giờ

13 tháng 3 2016

MÌNH BIK LÀM CÂU A THUI, mình ko ghi lại đề nha

P=1/2.2/3.3/4........99/100

(Nhân tử với tử, mẫu nhân với mẫu ) ta có 

P=1.2.3.4.......99/2.3.4...........100

P=1/100

13 tháng 3 2016

\(P=\frac{1}{2}.\frac{2}{3}......\frac{99}{100}=\frac{1.2.3....99}{2.3.4....100}=\frac{1}{100}\)

\(Q=\frac{4}{1.3}.\frac{9}{2.4}.....\frac{9901}{99.100}=\frac{2^2}{1.3}.\frac{3^2}{2.4}.....\frac{99^2}{99.100}=\frac{2^2.3^2...99^2}{1.2.3^2....98^2.99.100}=\frac{2.99}{100}=\frac{99}{50}\)

25 tháng 2 2020

D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)

=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)

=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)

=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)

=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)

=>\(D=-\frac{101}{200}\)