Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(=\dfrac{\sqrt{5}.\sqrt{7}}{5}=\dfrac{\sqrt{35}}{5}\)
b) \(=\dfrac{\left|y\right|}{\sqrt{3}}=\dfrac{\sqrt{3}y}{3}\)
c) \(=\dfrac{\sqrt{2}}{\sqrt{t}}=\dfrac{\sqrt{2t}}{t}\)
d) \(=\sqrt{\dfrac{7p^2-3p^2}{7}}=\sqrt{\dfrac{4p^2}{7}}=\dfrac{2\left|p\right|}{\sqrt{7}}=\dfrac{-2\sqrt{7}p}{7}\)
Bài 2:
a) \(=\dfrac{\sqrt{21}-\sqrt{15}}{3}\)
b) \(=\dfrac{10\left(4+3\sqrt{2}\right)}{16-18}=-20-15\sqrt{2}\)
c) \(=\dfrac{\left(3\sqrt{10}-5\right)\left(6+\sqrt{10}\right)}{36-10}=\dfrac{18\sqrt{10}+30-30-5\sqrt{10}}{26}=\dfrac{13\sqrt{10}}{26}=\dfrac{\sqrt{10}}{2}\)
\(P=\dfrac{2\sqrt{x}+1+\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}+1+1-x}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{-x+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\dfrac{-x+2\sqrt{x}+2}{x+3\sqrt{x}+2}\)
ta có sinB=\(\dfrac{AH}{AB}\)\(\Rightarrow\)AH=AB.sinB=3,6.sin62=3,18
BH=\(\sqrt{AB^2-AH^2}\)(pytago)=\(\sqrt{3,6^2-3,18^2}\)=1,69
\(_{\widehat{C}}\)=90-\(\widehat{B}\)=90-62=28\(^0\)
sinC=\(\dfrac{AB}{BC}\)\(\Rightarrow\)BC=\(\dfrac{AB}{sinC}\)=\(\dfrac{3,6}{sin28}\)=7,67
mà:CH=BC-BH=7,67-1,69=5,98
AC=\(\sqrt{BC^2-AB^2}\)(pytago)=\(\sqrt{7,67^2-3,6^2}\)=6.77
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CN là tiếp tuyến có N là tiếp điểm
Do đó: CM=CN
hay C nằm trên đường trung trực của MN(1)
Ta có: OM=ON
nên O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OC là đường trung trực của MN
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)
8: \(=\dfrac{x_1^2+x_2^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{2}{1}=2\)
9: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=2^3-3\cdot\left(-1\right)\cdot2=8+6=14\)
16: \(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{2^2-4\cdot\left(-1\right)}=\sqrt{4+4}=2\sqrt{2}\)
a) Xét pt hoành độ gđ của (P) và (d) có:
\(\dfrac{1}{2}x^2=mx+2\) \(\Leftrightarrow x^2-2mx-4=0\) (1)
Có \(ac=1.\left(-4\right)< 0\)
=>Pt (1) luôn có hai nghiệm trái dấu
=> (P) và (d) luôn cắt nhau tại hai điểm phân biệt
b) \(M=\left(d\right)\cap Oy\Rightarrow M\left(0;2\right)\) \(\Rightarrow OM=2\)
Nhận xét: (P) luôn nằm phia trên trục hoành
(d) luôn cắt (P) tại hai điểm A(x1;y1) và B(x2;y2) với x1;x2 là hai nghiệm của pt (1) , x1.x2<0
=> A;B nằm khác phía nhau so với trục tung
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4\end{matrix}\right.\)
Do H và K lần lượt là hình chiếu của A và B trên trục hoành
=> \(OH=\left|x_1\right|\), \(OK=\left|x_2\right|\)
\(S_{MHK}=\dfrac{1}{2}.MO.HK=\dfrac{1}{2}.2\left(\left|x_1\right|+\left|x_2\right|\right)\)
\(\Leftrightarrow4=\left|x_1\right|+\left|x_2\right|\) \(\Leftrightarrow16=x_1^2+x_2^2+2\left|x_1x_2\right|\)
\(\Leftrightarrow16=\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2\) (do x1x2<0 => |x1x2|=-x1x2)
\(\Leftrightarrow16=4m^2-2\left(-4\right)-2\left(-4\right)\)
\(\Leftrightarrow m=0\)
Vậy...
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
Để pt có 2 nghiệm pb khi x khác 2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
Vì x1 là nghiệm pt trên nên \(x_1^2=mx_1-m+1\)
Thay vào ta được \(mx_1-m+1+3x_2=19\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}mx_1+mx_2=m^2\\mx_1+3x_2=m+18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)x_2=m^2-m-18\\x_2=m-x_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m^2-m-18}{m-3}\\x_1=\dfrac{m^2-3m-m^2+m+18}{m-3}=\dfrac{-2m+18}{m-3}\end{matrix}\right.\)
Thay vào (2) ta được \(\dfrac{\left(m^2-m-18\right)\left(-2m+18\right)}{\left(m-3\right)^2}=m-1\Rightarrow m=5;m=-3\)
bạn giải chi tiết xem còn nghiệm nào ko nhé
a: \(A=\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}\)
=>\(A=\sqrt{\left(x+1\right)^2+4}>=\sqrt{4}=2\)
b: \(B=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\)