Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=2+2^2+.....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow2S-S=\left(2^2+2^3+.....+2^{101}\right)-\left(2+2^2+....+2^{100}\right)\)
\(\Rightarrow S=2^{101}-2\)
Đặt thừa số chung x.
Ta có:
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+9\right)\Leftrightarrow x+\left(1+2+3+...+9\right)=135\)
\(\Leftrightarrow x+\left(1+2+3+4+5+6+7+8+9\right)\Leftrightarrow x+45=135\)
\(\Rightarrow x=135-45=90\)
Đs:
x * 10 + (1 + 2 + 3 ... +9) = 135
x *10 + 45 =135
x * 10 = 135 - 45
x * 10 = 90
x =90 : 10
x = 9
Vậy x = 9
thử lại:(tự làm)
Ta có;
P=( 3+32 ) + ( 33+34 )+....+ (399+3100)
P=1.(3+32 ) + 32.(3+32)+...+ 398. ( 3+32)
P=1.12 + 32.12 + ... + 398. 12
P=12.( 1+32+...+ 398) chia hết cho 12
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
Bài này cũng khó:
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Gọi số tự nhiên n. Ta có:
\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).
Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}