K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

5 tháng 11 2016

a)\(H=1+5+...+5^{120}\)

\(=\left(1+5\right)+...+\left(5^{119}+5^{120}\right)\)

\(=1\cdot\left(1+5\right)+...+5^{119}\left(1+5\right)\)

\(=1\cdot6+...+5^{119}\cdot6\)

\(=6\cdot\left(1+...+5^{119}\right)⋮6\left(DPCM\right)\)

b)\(H=1+5+...+5^{120}\)

\(=\left(1+5+5^2\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)

\(=1\left(1+5+5^2\right)+...+5^{118}\left(1+5+5^2\right)\)

\(=1\cdot31+...+5^{118}\cdot31\)

\(=31\cdot\left(1+...+5^{118}\right)⋮31\left(DPCM\right)\)

5 tháng 11 2016

thanhs bạn nhe

14 tháng 7 2016

Suốt ngày nôn ọe . Nếu bn ko bít làm thì đừng trả lời!!! bucqua

14 tháng 7 2016

\(1+5+5^2+5^3+...+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)

\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)

\(=6+5^2.6+5^4.6+...+5^{100}.6\)

\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)

\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)

14 tháng 7 2016

câu b với bài 2 nữa nhé rùi mình tick cho

 

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

16 tháng 7 2016

không trả lời

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

10 tháng 11 2016

5+5^2+..+5^98=

(5+5^2+5^3+5^4+5^5+5^6)+..+(5^93+5^94+5^95+5^96+5^97+8^98)chia het cho 126

mấy bài còn lại cung tương tự 

kmình nhé

10 tháng 11 2016

Mình đã giải đc rồi!!!

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

13 tháng 8 2019

1) a)

gọi 5 số chẵn liên tiếp lad 2k; 2k+2; 2k+4;2k+6;2k+8

2k+2k+2+2k+4+2k+6+2k+8

= 10k +20

=10(k+2)

vì 10\(⋮\)10 nên 10(k+20)\(⋮\)10

b) gọi 5 số lẻ liên tiếp lần lượt là 2k+1; 2k+3; 2k+5; 2k+7; 2k+9

2k+1+2k+3+2k+5+2k+7+2k+9

=10k+25

=10k +20+5

=10(k+2)+5

vậy...

13 tháng 8 2019

cảm ơn bạn rất nhiều!