Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3.
$3(-4x^2y^2)y=3(-4).x^2y^2.y=-12x^2y^{2+1}=-12x^2y^3$
Đáp án C
Bài 4.
$(-2xy^3).(-4x^2y)=(-2).(-4).x.x^2.y^3.y=8x^3y^4$
$-2xy(-4x^2y^2)=(-2)(-4).x.x^2.y.y^2=8x^3y^3$ nên đơn thức A không đồng dạng với đơn thức ban đầu.
$x^2y(-8x^2y^2)=-8x^4y^3$ nên đơn thức D không đồng dạng với đơn thức ban đầu.
a: M=2x^3-x^3+5x^2-3x^2+1-2
=x^3+2x^2-1
b: Bậc là 3
c: Khi x=2 thì M=2^3+2*2^2-1=15
bài 2:
a: Ta có: \(\left(x+5\right)^3=-64\)
\(\Leftrightarrow x+5=-4\)
hay x=-9
b: Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Bài 1:
a.
\((2^3)^4-(2^6)^2=2^{3.4}-2^{6.2}=2^{12}-2^{12}=0\)
b.
\(32^5:8^3=(2^5)^5:(2^3)^3=2^{25}:2^9=2^{25-9}=2^{16}\)
c.
\(81^4.27^6=(3^4)^4.(3^3)^6=3^{16}.3^{18}=3^{16+18}=3^{34}\)
d.
\(x^{12}:(x^3)^4=x^{12}: x^{12}=1\)
Các số được điền vào các ô theo thứ tự từ trái sang phải là:
-1; - \(\dfrac{1}{3}\); \(\dfrac{2}{3}\); \(\dfrac{4}{3}\)
Ta có: \(\left(x-3.5\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(\dfrac{7}{2};\dfrac{1}{10}\right)\)
do
\(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
mà ta có \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
nên \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4=0\)
suy ra \(\left\{{}\begin{matrix}x-3,5=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}\end{matrix}\right.\)
tick mik nha
Câu 15:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: DF=DC
c: Ta có: ΔBFC cân tại B
mà BD là phân giác
nên BD là đường cao
a: \(\widehat{B}+\widehat{C}=90^0\)
c: Góc kề bù với C bằng tổng của góc A cộng góc B