Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
Bài 1 :
ƯC( 48 ; 79 ; 72 ) = 1
Bài 2 :
160 \(⋮\)x ; 152 \(⋮\)x ; 76 \(⋮\)x và x lớn nhất
=> x là ƯCLN(160;152;76)
Ta có :
160 = 25 . 5
152 = 23 . 19
76 = 22 . 19
=> ƯCLN(160;152;76 ) = 4
Vậy x = 4
Bài 3 :
Gọi số tổ chia đc sao cho số hs nam và nữ trong mỗi tổ = nhau là a ( a> 1 )
Theo đề bài , ta có :
28 \(⋮\)a ; 24 \(⋮\)a
=> a \(\in\)ƯC( 28 ; 24 )
Ta có :
28 = 22 . 7
24 = 23 . 3
=> ƯCLN( 28 ; 24 ) = 22 = 4
=> ƯC( 28 ; 24 ) = Ư(4) = { 1;2;4 }
=> a \(\in\){ 2 ; 4 } ( a>1 )
Vậy có 2 cách chia
C1 : Số tổ 2 ; Số hs nam : 14 ; số hs nữ : 12
C2 : Số tổ 4 ; số hs nam : 7 ; số hs nữ : 6
Vậy với cách chia thành 4 tổ thì mỗi tổ có số hs ít nhất
Bài 4 :
Ta có :
13n + 7 chia hết cho 5
=> 10n + 3n + 10 - 3 chia hết cho 5
=> 3n - 3 chia hết cho 5
=> 3(n - 1) chia hết cho 5
=> n - 1 chia hết cho 5
=> n - 1 = 5k
=> n = 5k + 1
Vậy với n = 5k + 1(k tự nhiên) thì 13n + 7 chia hết cho 5
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
7 chia het cho (2x+1)
ma 7 chia het cho 1;7
=>2x+1=1=>x=0
2x+1=7=>x=3
ket luan x = 0;3
từ từ thôi cái này tốn có 4 câu hỏi thôi mà cho vào 1 câu làm gì