K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 10 2021

1.3 Giải phương trình: 

a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)

\(\Leftrightarrow2x=2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{2}\)(tm) 

b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\)

\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)

\(\Leftrightarrow x=13+6\sqrt{5}\)(tm) 

c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))

\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)

\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm) 

1.4: Phân tích thành nhân tử: 

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

NM
5 tháng 9 2021

đây là bài lớp 10 chứ nhỉ

ta có \(AC=20\times2=40\text{ hải lí}\)\(AB=15\times2=30\text{ hải lí}\)

áp dụng định lý cosin ta có :

\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm. 

1 tháng 8 2016

a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)

                                       \(\widehat{DAE}=90\)

                                        \(\widehat{AEH}=90\)

=> Tứ giác ADHE là hình chữ nhật

=>DE=AH

Áp dụng hệ thức liên quan tới đường cao ta có:

    \(AH^2=HB\cdot HC=2\cdot8=16\)

=>AH=4

=>DE=AH=4

b)Gọi O là giao điểm của AH và DE

Vì ADHE là hình chữ nhật

=>OD=OA

=>ΔOAD cân tại O

=>\(\widehat{OAD}=\widehat{ODA}\)

Xét ΔABH vuông tại H(gt)

=>\(\widehat{BAH}+\widehat{B}=90\)               (1)

Xét ΔABC vuông tại A(gt)

=>\(\widehat{B}+\widehat{C}=90\)                      (2)

Từ (1) (2) suy ra:  \(\widehat{BAH}=\widehat{C}\)

Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)

=> \(\widehat{ADE}=\widehat{ACB}\) 

Xét ΔADE và ΔACB có     

 \(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)

   \(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)

=>ΔADE~ΔACB

 

 

1 tháng 8 2016

cám ơn bạn :D

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).