Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
\(2x-3=\frac{x+1}{2}\)
\(\Rightarrow2\left(2x-3\right)=x+1\)
\(\Rightarrow4x-6=x+1\)
\(\Rightarrow3x=7\)
\(\Rightarrow x=\frac{7}{3}\)
a:
\(AB=\dfrac{AC}{2}\)
\(AD=DC=\dfrac{CA}{2}\)
Do đó: AB=AD=DC
Xét ΔAHB vuông tại H và ΔCED vuông tại E có
AB=CD(cmt)
\(\widehat{HAB}=\widehat{ECD}\left(=90^0-\widehat{HBA}\right)\)
Do đó: ΔAHB=ΔCED
b: DE\(\perp\)BC
AH\(\perp\)BC
Do đó: DE//AH
Xét ΔCAH có
D là trung điểm của AC
DE//AH
Do đó: E là trung điểm của CH
=>EC=EH
Xét ΔDHC có
DE là đường cao
DE là đường trung tuyến
Do đó: ΔDHC cân tại D
c: ΔABD vuông tại A
mà AI là đường trung tuyến
nên \(AI=\dfrac{1}{2}BD\left(1\right)\)
ΔBED vuông tại E
mà EI là đường trung tuyến
nên \(EI=\dfrac{1}{2}BD\left(2\right)\)
Từ (1) và (2) suy ra AI=EI
ΔAHB=ΔCED
=>AH=CE
mà CE=EH
nên AH=EH
XétΔAHI và ΔEHI có
HA=HE
HI chung
AI=EI
Do đó: ΔAHI=ΔEHI
d: Xét ΔIDE có ID=IE
nên ΔIDE cân tại I
IK//BC
BC\(\perp\)DE
Do đó: IK\(\perp\)DE
ΔIDE cân tại I
mà IK là đường cao
nên IK là phân giác của góc DIE
=>\(\widehat{DIK}=\widehat{EIK}\)
Xét ΔIKD và ΔIKE có
IK chung
\(\widehat{KID}=\widehat{KIE}\)
ID=IE
Do đó: ΔIKD=ΔIKE
f: Xét tứ giác ADEB có
\(\widehat{DAB}+\widehat{DEB}=90^0+90^0=180^0\)
=>ADEB là tứ giác nội tiếp
=>\(\widehat{AED}=\widehat{ABD}=45^0\)
Bài 4:
Gọi số sách vở khối 6,7,8,9 quyên góp lần lượt là a,b,c,d(quyển)(a,b,c,d∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{8}=\dfrac{b}{7}=\dfrac{c}{6}=\dfrac{d}{5}=\dfrac{a-c}{8-6}=\dfrac{80}{2}=40\)
\(\Rightarrow\left\{{}\begin{matrix}a=40.8=320\\b=40.7=280\\c=40.6=240\\d=40.5=200\end{matrix}\right.\)(nhận)
Vậy...
Bài 5:
Gọi số giấy vụn của lớp 8,7,6 lần lượt là a,b,c(kg)(a,b,c>0)
Áp dụng t/c dtsbn:
\(\dfrac{a}{7}=\dfrac{b}{8}=\dfrac{c}{9}=\dfrac{c-a}{9-7}=\dfrac{80}{2}=40\)
\(\Rightarrow\left\{{}\begin{matrix}a=40.7=280\\b=40.8=320\\c=40.9=360\end{matrix}\right.\)(nhận)
Vậy...
thực ra bữa h off bây h rảnh nên vào lướt hoidap -.- thấy bài bạn nên làm vậy
a) Vì Oz là tia phân giác của xOy
=> xOz = zOy =\(\frac{xOy}{2}=\frac{120^0}{2}=60^0\)
Vì x'Oz' đối đính xOz
=> x'Oz' = xOz= 60 độ
làm tới đây thôi nhé mình phải đi ngủ rồi , còn mỗi câu b mấy bạn khác làm luôn đi.
Đề :
Tìm x thỏa mãn \(\frac{1+3y}{12}=\frac{1+6y}{16}=\frac{1+9y}{4x}\)
Bài làm :
Áp dụng tính chất của dãy tỉ số bằng nhau, có :
\(\frac{1+3y}{12}=\frac{1+6y}{16}=\frac{1+9y}{4x}=\frac{\left(1+3y\right)+\left(1+9y\right)}{12+4x}\)
\(=\frac{2+12y}{12+4x}\)
\(\Rightarrow\frac{1+6y}{16}=\frac{2+12y}{12+4x}=\frac{2\left(1+6y\right)}{2\left(6+2x\right)}=\frac{1+6y}{6+2x}\)
\(\Rightarrow6+2x=16\)
\(\Leftrightarrow2x=10\Rightarrow x=5\)
Vậy ...
ai giúp coi