Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^4+3x^3+x^2+3x=x\left(x^3+3x^2+x+3\right)\)
\(=x\left[x^2\left(x+3\right)+\left(x+3\right)\right]=x\left(x+3\right)\left(x^2+1\right)\)
b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-4z^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)
c) \(=2x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(2x-7\right)\)
\(a,=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x^2+1\right)\left(x+3\right)\\ b,=\left(x+3y\right)^2-4z^2=\left(x+3y+2z\right)\left(x+3y-2z\right)\\ c,=2x^2-2x-7x+7=\left(x-1\right)\left(2x-7\right)\)
1)\(6x-x^2=x\left(6-x\right)\)
2)\(5x^2z-15xyz+30xz^2=5x\left(xz-3y+6z\right)\)
3)\(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
\(\Rightarrow2x^2-2x-x+1=0\\ \Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\\ \Rightarrow\left(2x-1\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
a) \(2x^2-16x=0\)
\(\Rightarrow2x\left(x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
b) \(\left(2x-1\right)^2-25=0\)
\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Rightarrow4\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(b.\left(2x-1\right)^2-25=0\)
<=>\(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
<=>\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(a.2x^2-16x=0< =>2x\left(x-8\right)=0\)
\(< =>\left[{}\begin{matrix}2x=0\\x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
a: \(x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
b: \(x\left(x+5\right)+x\left(x+15\right)=0\)
\(\Leftrightarrow x\left(2x+20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-10\end{matrix}\right.\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+7x+13\right)=0\Rightarrow x=-2\)
\(x^3+9x^2+27x+26=0\)
\(\Leftrightarrow x^3+9x^2+27x+27=1\)
\(\Leftrightarrow\left(x+3\right)^3=1^3\)
\(\Leftrightarrow x+3=1\Leftrightarrow x=-2\)
\(\Leftrightarrow x\left(x^4-9\right)=0\Leftrightarrow x\left(x^2+3\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+3=0\left(vô.nghiệm\right)\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
\(x^5-9x=0\)
\(x\left(x^4-9\right)=0\)
\(x\left[\left(x^2\right)^2-3^2\right]=0\)
\(x\left(x^2+3\right)\left(x^2-3\right)=0\)
⇒\(\left[{}\begin{matrix}x=0\\x^2+3=0\\x^2-3=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=0\left(TM\right)\\x^2=-3\left(L\right)\\x^2=3\left(L\right)\end{matrix}\right.\)