Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
Khi chia 8 số tự nhiên cho 7 thì mỗi số sẽ nhận 1 giá trị dư thuộc {1; 2; 3; 4; 5; 6}
Như vậy sẽ có 2 số khi chia có 7 có cùng số dư. Giả sử có 2 số A>B khi chia cho 7 có cùng số dư là a ta có
A=7m+a; B=7n+a => A-B = 7(m-n) chia hết cho 7
=> Trong 8 số có 3 chữ số, giả sử abc > def có cùng số dư => abc - def chia hết cho 7 theo cm ở trên. Khi viết liền nhau
abcdef = 1000.abc + def = 1001.abc - abc + def = 1001.abc - (abc - def)
=> 1001 chia hết cho 7 và abc - def chia hết cho 7 => abcdef chia hết cho 7 (dpcm)
giúp mình câu này với
B=2+2 mũ 2+2 mũ 3+2 mũ 4 +.......+2 mũ 99
shinichi ma oc lol