K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

2:

a: Xét tứ giác OAMD có

\(\widehat{OAM}+\widehat{ODM}=90^0+90^0=180^0\)

=>OAMD là tứ giác nội tiếp 

b: Xét (O) có

ΔADC nội tiếp 

AC là đường kính

Do đó: ΔADC vuông tại D

=>AD\(\perp\)BC tại D

Xét ΔABC vuông tại A có AD là đường cao

nên \(AD^2=DB\cdot DC\)

Xét (O) có

MA,MD là tiếp tuyến

Do đó: MA=MD

=>\(\widehat{MAD}=\widehat{MDA}\)

mà \(\widehat{MAD}+\widehat{MBD}=90^0\)(ΔADB vuông tại D)

và \(\widehat{MDA}+\widehat{MDB}=\widehat{BDA}=90^0\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

mà MD=MA

nên MB=MA

=>M là trung điểm của AB

Xét ΔABC có

M,O lần lượt là trung điểm của AB,AC

=>MO là đường trung bình

=>MO//BC

loading...

12 tháng 9 2016

a + \(2\sqrt{a-\:1}\)= (a - 1) + \(2\sqrt{a-\:1}\)+ 1 = (\(1\:\:+\sqrt{a-1}\))2

Tương tự cho cái còn lại sẽ ra

a: Kẻ OH vuông góc BC

=>OH là khoảng cách từ O đến BC

ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{R\sqrt{3}}{2}\)

ΔOHB vuông tại H

=>\(OH^2+HB^2=OB^2\)

=>\(OH^2=OB^2-HB^2=R^2-\left(\dfrac{R\sqrt{3}}{2}\right)^2=\dfrac{R^2}{4}\)

=>OH=R/2

=>d(O;BC)=R/2

b: Xét ΔOBC có \(cosBOC=\dfrac{OB^2+OC^2-BC^2}{2\cdot OB\cdot OC}\)

=>\(cosBOC=\dfrac{R^2+R^2-3R^2}{2\cdot R\cdot R}=\dfrac{-1}{2}\)

=>\(\widehat{BOC}=120^0\)

ΔOBC cân tại O

=>\(\widehat{OBC}=\widehat{OCB}=\dfrac{180^0-120^0}{2}=30^0\)

6 tháng 11 2023

cảm ơn nha

11 tháng 6 2023

nếu câu a và b ko liên quan đến hình thì b vẫn dc điểm câu a và b còn nếu nó lq đến hình thì coi như bỏ (vì sai hình ko chấm điểm b nhé)

 

NV
22 tháng 2 2021

Câu 4:

D và F cùng nhìn AC dưới 1 góc vuông nên tứ giác ACDF nội tiếp

\(\Rightarrow\widehat{ADF}=\widehat{ACF}\) (cùng chắn AF)

Tương tự, ABDE nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\) (cùng chắn AE)

Lại có \(\widehat{ABE}=\widehat{ACF}\) (cùng phụ góc \(\widehat{A}\))

\(\Rightarrow\widehat{ADE}=\widehat{ADF}\) hay AD là phân giác góc \(\widehat{FDE}\)

./

Hoàn toàn tương tự, ta cũng có CF là phân giác \(\widehat{DFE}\Rightarrow\widehat{BFD}=\widehat{AFE}\)

Mà \(\widehat{AFE}=\widehat{BFK}\Rightarrow\widehat{BFK}=\widehat{BFD}\)

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{FK}{FD}\) theo định lý phân giác

Đồng thời \(\dfrac{CK}{CD}=\dfrac{FK}{FD}\) (CF là phân giác ngoài góc \(\widehat{DFK}\))

\(\Rightarrow\dfrac{BK}{BD}=\dfrac{CK}{CD}\Rightarrow\dfrac{BK}{CK}=\dfrac{BD}{CD}\)

Qua B kẻ đường thẳng song song AC cắt AK và AD tại P và Q

Theo Talet: \(\dfrac{BK}{CK}=\dfrac{BP}{AC}\) đồng thời \(\dfrac{BD}{DC}=\dfrac{BQ}{AC}\)

\(\Rightarrow\dfrac{BP}{AC}=\dfrac{BQ}{AC}\Rightarrow BP=BQ\)

Mặt khác BP song song MF (cùng song song AC)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{AF}{AB}\) ; \(\dfrac{NF}{BQ}=\dfrac{AF}{AB}\) (Talet)

\(\Rightarrow\dfrac{MF}{BP}=\dfrac{NF}{BQ}\Rightarrow MF=NF\)

NV
22 tháng 2 2021

Hình vẽ câu 4:

undefined

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

a: góc AEB=góc AHB=90 độ

=>ABHE nôi tiếp

b: Gọi N là trung điểm của AB

=>AN=HN=EN=BN

MN là đường trung bình của ΔABC

=>MN//AC 

HE vuông góc AC

=>HE vuông góc MN

=>MN là trung trực của HE

=>ME=MH

 

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé