Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
5: Ta có: \(1-\sqrt{x^2-2}=0\)
\(\Leftrightarrow x^2-2=1\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
giả sử phương trình đã cho có nghiệm này gấp đôi nghiệm kia
Và áp dụng hệ thúc viet ta có:
\(\begin{cases}x_1+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}2x_2+x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}3x_2=-p\\x_{1.}.x_2=q\\x_1=2x_2\end{cases}\)=>\(\begin{cases}x_2=\frac{-p}{3}\\x_{1.}.x_2=q\left(1\right)\\x_1=\frac{-2p}{3}\end{cases}\)
Thay \(x_1\)=\(\frac{-2p}{3}\); \(x_2\)=\(\frac{-p}{3}\) vào (1) ta có:
\(\frac{-2p}{3}\).\(\frac{-p}{3}\)=q
2\(p^2\)=9q
2\(p^2\)-9q=0
Vậy khi 2\(p^2\)-9q=0 thì phương trình trên có nghiệm này gấp 2 nghiệm kia
Câu 1:
1) ĐKXĐ: \(-2x+5\ge0\Leftrightarrow x\le\dfrac{5}{2}\)
2) ĐKXĐ: \(-x+1>0\Leftrightarrow x< 1\)
Câu 2:
1) \(=6\sqrt{2}+3\sqrt{2}-10\sqrt{2}+3\sqrt{3}=3\sqrt{3}-\sqrt{2}\)
2) \(=5-3+\sqrt{2}-1=1+\sqrt{2}\)
3) \(=15-3+5\sqrt{15}=12+5\sqrt{15}\)
4) \(=\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt[]{3}}{3}+\dfrac{\sqrt{3}}{6}=\dfrac{3\sqrt{3}+2\sqrt{3}+\sqrt{3}}{6}=\dfrac{6\sqrt{3}}{6}=\sqrt{3}\)
a: a*c=-3m^2<=0
=>Phương trình luôn có hai nghiệm
b: Khi x=-3 thì (1) sẽ là;
(-3)^2+6(2m-1)-3m^2=0
=>-3m^2+9+12m-6=0
=>-3m^2+12m+3=0
=>\(m=2\pm\sqrt{5}\)
Gọi giá ban đầu của đôi giày nếu không khuyến mãi là x(vnđ)
Giá tiền được giảm là: 65%x(vnđ)
Theo đề bài ra ta có:
x-65%x=1 520 000
<=>35%x=1 520 000
<=> x=4 342 857,143
x=4 342 857,143
Vậy giá tiền ban đầu của chiếc giày là 4 342 857,143
1.\(sin^2\alpha+cos^2\alpha=\left(\dfrac{AC}{BC}\right)^2+\left(\dfrac{AB}{BC}\right)^2\)
=\(\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2\left(pytago\right)}{BC^2}=1\)
2.ta có \(tan\alpha=\dfrac{AC}{AB}\)
\(\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)
\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
3.ta có:\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2\)
=\(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\)=\(\dfrac{1}{cos^2\alpha}\)
4.ta có :\(cot\alpha=\dfrac{AB}{AC}\)
\(\dfrac{cos\alpha}{sin\alpha}=\dfrac{\dfrac{AB}{BC}}{\dfrac{AC}{BC}}=\dfrac{AB}{AC}\)
\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}\)=\(\dfrac{1}{sin^2a}\)