Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: \(AH=AD\left(1\right)\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: \(AH=AE\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
Lời giải:
a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$
$\Rightarrow AD=AH(1)$
Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$
$\Rightarrow AH=AE(2)$
Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$
b.
Vì $AB$ là trung trực $DH$ nên:
$AD=AH, MD=MH$
Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)
$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$
Tương tự: $\triangle ANH=\triangle ANE(c.c.c)
$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$
Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$
Do đó $HA$ là phân giác $\widehat{MHN}$
Làm nốt câu c,d.
c. Sửa thành $BN, CM, AH$ đồng quy
Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$
Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)
$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$
$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)
$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$
$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)
$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$
Mặt khác:
Vì $\triangle ADT\sim \triangle NHT$
$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$
Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)
$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$
Xét tam giác $RBD$ và $RNH$ có:
$\widehat{R}$ chung
$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$
$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)
$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$
$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)
$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$
Từ $(3);(4)$ suy ra:
$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$
$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$
$\Rightarrow BN\perp AC$
Tương tự $CM\perp AB$
Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)
d. Đã làm ở phần c.
P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.
a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)
-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.
\(\Rightarrow\)△ACH∼△BCA (g-g)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).
△ABC có: IH//BC (cùng vuông góc AB).
\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).
-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).
\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).
\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).
-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AIK∼△ACB (g-g).
\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)
\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)
b) *CM cắt AH tại D, BM cắt AC tại F.
AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.
E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).
\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)
\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).
\(\Rightarrow BM=FM\) nên M là trung điểm BC.
-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).
-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)
\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.
\(\Rightarrow\)D là trung điểm IK.
-Vậy IK, AH, CM đồng quy tại D.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE