Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADB và ΔAEC có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE và góc BAD=góc CAE
góc AEB>góc C
=>góc AEB>góc ABE
=>AB>AE
Lấy M sao cho D là trung điểm của AM
Xét tứ giác ABME có
D là trung điểm chung của AM và BE
=>ABME là hbh
=>AB=ME>AE và góc BAD=góc AME
=>góc DAE>góc DME
=>góc DAE>góc BAD
Bài 3:
a) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE
nên \(\widehat{BEC}=\widehat{A}+\widehat{ABE}=90^0+\widehat{ABE}>90^0\)
hay \(\widehat{BEC}\) là góc tù
b) \(\widehat{BEA}=180^0-110^0=70^0\)
\(\Leftrightarrow\widehat{ABE}=20^0\)
\(\Leftrightarrow\widehat{ABC}=40^0\)
\(\Leftrightarrow\widehat{ACB}=50^0\)
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
tam giác ABN cân tại B nên đường cao cũng chính là đường trung tuyến nên AH =HN
Ta có : hai tam giác ABH và NBH có BH là cạnh chung ,NB=BA ,AH=HN nên hai tam giác bằng nhau theo trường hợp cạnh cạnh cạnh
`6x^2+9=0`
Vì \(x^2\ge0\text{ }\forall\text{ x}\)
`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)
`\rightarrow` Đa thức vô nghiệm.
Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:
\(6x^2+9=0\)
\(\rightarrow\text{ }6x^2=0-9\)
\(\rightarrow\text{ }6x^2=-9\)
Mà \(x^2\ge0\text{ }\forall\text{ x}\)
\(\rightarrow\text{ Đa thức vô nghiệm.}\)
(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).
Dùng phương pháp phản chứng em nhé:
Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:
6\(x^2\) + 9 = 0
Mặt khác ta có: \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)
vậy 6\(x^2\) + 9 = 0 (là sai) hay
Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)
a) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE
nên \(\widehat{BEC}=\widehat{A}+\widehat{ABE}=90^0+\widehat{ABE}>90^0\)
hay \(\widehat{BEC}\) là góc tù
b) \(\widehat{BEA}=180^0-110^0=70^0\)
\(\Leftrightarrow\widehat{ABE}=20^0\)
\(\Leftrightarrow\widehat{ABC}=40^0\)
\(\Leftrightarrow\widehat{ACB}=50^0\)