K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Góc BEC=góc BFC=90 độ

=>BCEF LÀ TỨ GIÁC NỘI TIẾP

=>Góc AFE=gócC (1)

Tam giác BNC đồng dạng với tam giác BMC(g.c.g)

=>Góc BNC=góc BMC

=>BCMN là tứ giác nội tiếp

=>Góc ANM=góc AMN=góc C (2)

Từ 1 và 2

Có EF song song với MN và góc ANM=góc AMN

=>EMNF là hình thang cân

20 tháng 7 2017

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :

AB = AC (\(\Delta ABC\)cân)

\(\widehat{A}\)chung

=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)

b) Có CF và BE là 2 đường cao 

=> Giao điểm H là trực tâm

=> AH là đường cao của BC

c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân 

=> \(\widehat{ABC}=\widehat{ACB}\)

=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .

15 tháng 9 2021

giup minh nha, minh can gapkhocroi

15 tháng 9 2021

\(7,\)

\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)

\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)

\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)

Vậy \(BEFC\) là hình thang cân