K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

2: Để (d1)//(d2) thì m-1=2

hay m=3

23 tháng 12 2021

Giải giúp em ik

29 tháng 6 2021

Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!

`|P|>=P`

Mà `|P|>=0`

`=>P<=0`

`<=>(sqrtx+2)/(2sqrtx-1)<=0`

Mà `sqrtx+2>=2>0AAx>=0`

`<=>2sqrtx-1<0`

`<=>2sqrtx<1`

`<=>sqrtx<1/2`

`<=>x<1/4`

Vậy với `0<=x<1/4` thì `|P|>=P.`

14 tháng 6 2021

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4

14 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C

trong \(\Delta ABC\) vuông tại C có

AC=AB.cosBAC=10.cos30=8,7

BC=AB.sinCAB=10.sin30=5

ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B

trong \(\Delta\)ABE vuông tại B có

\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)

mà:CE=AE-AC=11,5-8,7=2,8

b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có

\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)

15 tháng 10 2021

 mình cảm ơn bạn :>

 

a: Xét (O) có

EM,EA là tiếp tuyến

nên EM=EA và OE là phân giác của góc MOA(1)

Xét (O) có

FM,FB là tiếp tuyến

nên FM=FB và OF là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc FOE=1/2*180=90 độ

b: EF=EM+MF

=>EF=EA+FB

c: Xét ΔOEF vuông tại O có OM là đường cao

=>ME*MF=OM^2

=>ME*MF=OA^2

a: =>x>=0 và x^2+x=x^2

=>x=0

a: =>x>=1 và 1-x^2=x^2-2x+1

=>-2x^2+2x=0 và x>=1

=>x=1

a: =>x>=1 và 1-2x^2=x^2-2x+1

=>-3x^2+2x=0 và x>=1

=>\(x\in\varnothing\)

a: ĐKXĐ: x<=2 và x^2-2x=x^2-4x+4

=>x=2

a: =>căn x^2-4=x-2

=>x>=2 và x^2-4=x^2-4x+4

=>x>=2 và 4x=8

=>x=2

b: =>x>=0 và x^2-4x+1=x^2

=>-4x+1=0 và x>=0

=>x=1/4

b: =>x>=-1 và x^2+x+1=x^2+2x+1

=>x=0

c: =>x>=1 và 4x^2-8x+1=x^2-2x+1

=>x>=1 và 3x^2-6x=0

=>x=2

b: =>x>=-1 và 5x^2-2x+2=x^2+2x+1

=>x>=-1 và 4x^2-4x+1=0

=>x=1/2

b: =>căn 4x^2-x+1=2x+3

=>x>=-3/2 và 4x^2-x+1=(2x+3)^2=4x^2+12x+9

=>x>=-3/2 và -13x=8

=>x=-8/13

2 tháng 7 2023

Anh xem lại câu a2 nhé ĐK là \(x\le1\)

2:

a: AC=căn 5^2-3^2=4cm

sin B=AC/BC=4/5

cos B=AB/BC=3/5

tan B=4/5:3/5=4/3

cot B=1:4/3=3/4

b: AB=căn 13^2-12^2=5cm

sin B=AC/BC=12/13

cos B=AB/BC=5/13

tan B=12/13:5/13=12/5

cot C=1:12/5=5/12

c: BC=căn 4^2+3^2=5cm

sin B=AC/BC=4/5

cos B=AB/BC=3/5

tan B=4/5:3/5=4/3

cot B=1:4/3=3/4

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

NV
28 tháng 8 2021

19.

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)=4\Rightarrow-2\le a+b\le2\)

\(P=3\left(a+b\right)+ab=3\left(a+b\right)+\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\dfrac{1}{2}\left(a+b\right)^2+3\left(a+b\right)-1\)

Đặt \(a+b=x\Rightarrow-2\le x\le2\)

\(P=\dfrac{1}{2}x^2+3x-1=\dfrac{1}{2}\left(x+2\right)\left(x+4\right)-5\ge-5\) (đpcm)

Dấu "=" xảy ra khi \(x=-2\) hay \(a=b=-1\)

NV
28 tháng 8 2021

20.

Đặt \(P=2a+2ab+abc\)

\(P=2a+ab\left(2+c\right)\le2a+\dfrac{a}{4}\left(b+2+c\right)^2=2a+\dfrac{a}{4}\left(7-a\right)^2\)

\(P\le\dfrac{1}{4}\left(a^3-14a^2+57a-72\right)+18=18-\dfrac{1}{4}\left(8-a\right)\left(a-3\right)^2\le18\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;2;0\right)\)