K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4

29 tháng 6 2021

Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!

`|P|>=P`

Mà `|P|>=0`

`=>P<=0`

`<=>(sqrtx+2)/(2sqrtx-1)<=0`

Mà `sqrtx+2>=2>0AAx>=0`

`<=>2sqrtx-1<0`

`<=>2sqrtx<1`

`<=>sqrtx<1/2`

`<=>x<1/4`

Vậy với `0<=x<1/4` thì `|P|>=P.`

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

3: 

a: \(\Leftrightarrow x+1-6\sqrt{x+1}-9=0\)

=>\(\left(\sqrt{x+1}-3\right)=0\)

=>x+1=9

=>x=8

b: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\left(\sqrt{\dfrac{1}{2}x+1}+3\right)}}=10\)

=>\(\sqrt{\dfrac{1}{2}x-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}-\dfrac{21}{4}}=10\)

=>\(\dfrac{1}{2}x-\dfrac{21}{4}-\dfrac{7}{4}\sqrt{\dfrac{1}{2}x+1}=100\)

=>\(\dfrac{7}{4}\cdot\sqrt{\dfrac{1}{2}x+1}=\dfrac{1}{2}x-\dfrac{21}{4}-100=\dfrac{1}{2}x-\dfrac{421}{4}\)

=>\(\sqrt{\dfrac{1}{2}x+1}=\dfrac{2}{7}x-\dfrac{421}{7}\)

=>1/2x+1=(2/7x-421/7)^2

=>1/2x+1=4/49x^2-1684/49x+177241/49

=>\(x\simeq249,77;x\simeq177,36\)

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Lời giải:

Từ ĐKĐB suy ra:

$-x^2+5xy+2y^2=3(x^2+y^2)$

$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$

$\Leftrightarrow (4x-y)(x-y)=0$

$\Rightarrow 4x=y$ hoặc $x=y$.

Nếu $4x=y$. Thay vô PT $(1)$ thì:

$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$

$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)

Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$

 

 

14 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C

trong \(\Delta ABC\) vuông tại C có

AC=AB.cosBAC=10.cos30=8,7

BC=AB.sinCAB=10.sin30=5

ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B

trong \(\Delta\)ABE vuông tại B có

\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)

mà:CE=AE-AC=11,5-8,7=2,8

b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có

\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)

15 tháng 10 2021

 mình cảm ơn bạn :>

 

14 tháng 6 2021

\(3.A=\dfrac{2\sqrt{x}+17}{\sqrt{x}+5}=\dfrac{2\left(\sqrt{x}+5\right)+7}{\sqrt{x}+5}\)\(=2+\dfrac{7}{\sqrt{x}+5}\)

\(\sqrt{x}+5\ge5=>2+\dfrac{7}{\sqrt{x}+5}\le2+\dfrac{7}{5}=3,4\)

dấu'=' xảy ra<=>x=0=>MaxA=3,4

14 tháng 6 2021

 Bài này ko phải tìm giá trị lớn hơn nhỏ hơn mà nó là tìm x để A thuộc Z bạn ơi

a: Xét (O) có

EM,EA là tiếp tuyến

nên EM=EA và OE là phân giác của góc MOA(1)

Xét (O) có

FM,FB là tiếp tuyến

nên FM=FB và OF là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc FOE=1/2*180=90 độ

b: EF=EM+MF

=>EF=EA+FB

c: Xét ΔOEF vuông tại O có OM là đường cao

=>ME*MF=OM^2

=>ME*MF=OA^2

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)