Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện nhân tung ra ta có .
a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)
b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)
\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)
c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)
\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)
\(=6x+26\)
toàn hđt mà bạn
a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)
b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)
d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)
\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn
\(\left(2u-4v\right)^3\)
A B C M N
Trong \(\Delta ABC\) có:
\(BC^2=AC^2+AB^2=144+25=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Xét \(\Delta\)ABC có:
MA = MB (gt)
NA=NC (gt)
=> MN là đường trung bình \(\Delta ABC\)
=>\(MN=\dfrac{1}{2}BC=\dfrac{1}{2}.13=6,5\left(cm\right)\)
Lại có: \(AN=\dfrac{1}{2}AC=6\left(cm\right)\)
P/S sai thui :))
chết mịa roài N là trung điểm BC :)) hèn gì thầy lạ :D sorry chán quá chắc 30phut nữa có thằng nhóc láu cá nó vào ns liền rồi nó giải cho :D
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
Bài 1: \(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
Đk:\(x\ne2;x\ne3;x\ne4;x\ne5;x\ne6\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+...+\frac{1}{x-6}-\frac{1}{x-5}=\frac{1}{8}\)
\(\Leftrightarrow-\frac{1}{x-2}+\frac{1}{x-6}=\frac{1}{8}\Leftrightarrow\frac{-\left(x-6\right)}{\left(x-2\right)\left(x-6\right)}+\frac{x-2}{\left(x-2\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{x^2-8x+12}=\frac{1}{8}\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow x^2-8x-20=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-10=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
bn đăng lại bài này với phần gõ công thức thì mk sẽ lm jup cho nhé ( nhớ tag tên hoặc gửi link qua tin chứ thế này thì :
1.quy định của hoc24 ko cho đăng câu hỏi bằng hình ảnh
2. bn đăng ngược như thế thì mỗi khi xem đề lại fai quay đầu mệt lắm
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
a) x\(^2\) - 10x + 9 =0
x\(^2\) - 2x . 5 + 25 = 16
(x - 5)\(^2\) = 4\(^2\)
=> x - 5 = 4
x = 9
Vậy x = 9
b) x\(^2\) - 7x + 6 = 0
x\(^2\) - 2x . 3,5 + 12,25 = 6,25
(x - 3,5)\(^2\) = 2,5\(^2\)
=> x - 3,5 = 2,5
x = 6
Vậy x = 6
c) x\(^2\) + 13x + 12 = 0
x\(^2\) + 2x . 6,5 + 42,25 = 30,25
(x + 6,5)\(^2\) = 5,5\(^2\)
=> x + 6,5 = 5,5
x = -1
Vậy x = -1
d) x\(^2\) - 24x + 23 = 0
x\(^2\) - 2x . 12 + 244 = 121
(x - 12)\(^2\) = 11\(^2\)
=> x - 12 = 11
x = 23
Vậy x = 23
e) 3x\(^2\) + 14x + 8 = 0
3x\(^2\) + 2 . \(\sqrt{3}\)x . \(\frac{7}{\sqrt{3}}\) + \(\frac{49}{3}\) = \(\frac{25}{3}\)
(\(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\))\(^2\) = \(\left(\frac{5}{\sqrt{3}}\right)^2\)
=> \(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\) = \(\frac{5}{\sqrt{3}}\)
=> \(\sqrt{3}\)x = \(\frac{-2}{\sqrt{3}}\)
=> x = \(\frac{-2}{3}\)