K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{3}{x}\cdot\left(-x\right)-\dfrac{3}{x}\cdot\dfrac{3}{3-x}=-3+\dfrac{9}{x\left(x-3\right)}\)

\(=\dfrac{-3x\left(x-3\right)+9}{x\left(x-3\right)}=\dfrac{-3x^2+9x+9}{x\left(x-3\right)}\)

16 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\\ c,\Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow3\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x-3\right)\left(5x-10\right)=0\\ \Leftrightarrow5\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

16 tháng 10 2021

a) \(\left(x+8\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\)

b) \(x\left(x-4\right)+5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x+5\right)=0\)

     \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

c) \(3x\left(x+1\right)-6\left(x+1\right)=0\) \(\Rightarrow\left(3x-6\right)\left(x+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}3x-6=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

d) \(5x\left(x-3\right)+10\left(3-x\right)=0\) \(\Rightarrow5x\left(x-3\right)-10\left(x-3\right)=0\)

     \(\Rightarrow\left(5x-10\right)\left(x-3\right)=0\)

     \(\Rightarrow\left[{}\begin{matrix}5x-10=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

 

10 tháng 10 2021

1) \(3x\left(x-4\right)-x+4=0\)

\(\Rightarrow3x\left(x-4\right)-\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)

2) \(2x\left(2x+3\right)-2x-3=0\)

\(\Rightarrow2x\left(2x+3\right)-\left(2x+3\right)=0\)

\(\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

10 tháng 10 2021

\(3x\left(x-4\right)-x+4=0\\ \Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\\ 2x\left(2x+3\right)-2x-3=0\\ \Leftrightarrow\left(2x+3\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

23 tháng 2 2022

a/

\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)

\(\Leftrightarrow6-6x=0\)

=> x=1

Làm có tâm ghê :)

25 tháng 2 2022

a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)

b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)

d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)

25 tháng 2 2022

a) Ta có: 4x-20=0

⇔4x=20

hay x=5

Vậy: S={5}

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=−12

hay x=-4

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

22 tháng 10 2023

\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

\(---\)

\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(---\)

\(c,4x(x-2)-x(3+4x)(?)\)

\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)

\(---\)

\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

\(---\)

\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(Toru\)

a) Ta có: \(x^4-16x^2=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b) Ta có: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4\left(x^4+36\right)=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

c) Ta có: \(\left(x-5\right)^3-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\cdot\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)

d) Ta có: \(5\left(x-2\right)-x^2+4=0\)

\(\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

10 tháng 12 2020

undefineda/ (do (x-3)^2 + 1 ≠0 vs mọi x

11 tháng 12 2020

a) (x-3)3-3+x=0

=> (x-3)3+(x-3)=0

=> (x-3)(x2-6x+10)

=> \(\left[{}\begin{matrix}x-3=0\\x^2-6x+10=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=1\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)

17 tháng 2 2021

1/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2/ \(x^3+3x^2+6x+4=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))

\(\Leftrightarrow x=-1\).

3/ \(x^3-6x^2+8x=0\)

\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)

4/ \(x^4-8x^3-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)